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CHAPTER 1

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a debilitating movement disability that causes pa-

tients to gradually lose their ability to voluntarily control their muscles. In some cases,

patients who are “locked-in” are unable to move any muscles, leaving them with no means

of communicating with caregivers. Brain-computer interfaces (BCIs) attempt to create a

means of communication directly through brain activity, removing the need for movement.

BrainBraille is a novel interaction method for BCIs, enabling complex text-based com-

munication using attempted movements with a six-region pseudo-binary encoding. In this

dissertation, I explore a wearable BCI using functional near-infrared scanning (fNIRS) to

make BrainBraille mobile. In an early study, I show that transitional gestures based on

executed movements of two hands can be classified in two participants with up to 93%

accuracy. I explore how transitional gestures can benefit BrainBraille by expanding the

vocabulary and enabling faster responses. Finally, I evaluate future paths for integrating

passive haptic training into BrainBraille to reduce the physical exertion needed to learn a

BCI for ALS patients.
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CHAPTER 2

INTRODUCTION

People with motor disabilities like Amyotrophic Lateral Sclerosis (ALS) face numerous

challenges in daily life due to a loss of voluntary muscle control. ALS has an incidence

rate of 6 per 100,000 and is one of the most common neuromotor diseases in adults [1].

ALS patients often have difficulty communicating with their caregivers and many different

systems have been proposed and implemented to assist with the gap in communication.

Most of these systems depend on allowing movement through the muscles they can still

control, but these need to be heavily customized to the patient. Moreover, they cannot be

used by patients who have locked-in syndrome, who are unable to move any muscles [2].

To circumvent this issue, brain-computer interfaces (BCIs) allow communication with

computers directly through brain activity, bypassing the peripheral nervous system [3]. For

people with motor disabilities like ALS, BCIs can allow them to communicate directly with

people around them, improving their quality of life and easing their interactions by letting

them have more control over the way they are treated by caretakers [4]. While some BCIs

rely on invasive, surgical approaches, many non-invasive BCI systems have been proposed

to reduce the risk and cost of using a new interface.

The most common method for non-invasive brain-computer interfaces is electroen-

cephalography (EEG), which measures electrical potentials in the brain. However, EEG

data is noisy and has limited information transfer rates [5]. In contrast, functional near-

infrared scanning (fNIRS) is a promising new method using near-infrared light to detect

hemoglobin concentrations in the brain and allows for greater resolution in signals obtained

from the brain [6].

Through BrainBraille, I demonstrate a novel, wearable brain-computer interface using

fNIRS to measure attempted movements from activity in the motor cortex. While there

2



have been past brain-computer interfaces using fNIRS on the motor cortex to allow direct

brain communication, these have been very limited in their communication capabilities,

such as only allowing “yes” or “no” answers. BrainBraille aims to provide far more ver-

satility in communication, hoping to enable brain-computer communication in complete

sentences. My system also contributes a faster and more intuitive method of communica-

tion than past brain-computer interface paradigms.

The most unique contribution of my work comes from its communication modality:

The original BrainBraille setup maps six parts of the body onto a Braille character in a

pseudo-binary configuration, and an alphabetic letter is obtained from the movement. Over

time, these letters are combined to form a complete grammatical language through at-

tempted or executed muscle contractions, thereby giving users with motor impairments a

much more versatile means for communication. In my study, I focus on movement transi-

tions in two parts instead, providing a window into the viability of six-region BrainBraille,

and creating a potentially faster transition-based configuration. Whereas past modes like

the P300 Speller (described in Section 3.1) have required two choices to be made for each

letter, ours has the potential of reducing it to one and allowing direct transitions from one

letter to the next. The language structure further enhances the system by enabling increased

accuracy with time series modeling tools such as time-series Support Vector Machines

(SVMs) with Tslearn [7] or Hidden Markov Models using the Kaldi toolkit and Georgia

Tech Gesture Toolkit [8, 9]. Using this approach, I demonstrate a cross-validation accuracy

of 93% on one participant and 70% on the other.

Moreover, whereas Zhao et al. [10] focus on fMRI to demonstrate the viability of

the BrainBraille communication modality, the use of fNIRS in my system expands it to

be portable and wearable. Portability is valuable for BCIs as most patients have some

means of assisted movement and need to maintain communication while mobile. Unlike

fMRI, where the patient has to be brought to the interface, fNIRS brings the interface to

the patient. It is significantly costly and physically exhausting to use a system like fMRI

3



for a brain-computer interface due to the difficulty of running fMRI sessions and preparing

patients for the sessions.

My project also aims to pave the way for using passive haptic learning (PHL) with a

BCI to enable the learning of gestures at the periphery of attention. Passive haptic learning

is an approach to passively stimulate areas with vibrations when they are performing other

tasks to assist their learning process [11]. In the past, passive haptic learning has been

demonstrated to help with learning typing skills [11] and rehabilitation [12] for people

with spinal cord injuries. PHL would enable faster learning of the BrainBraille system,

forming a feedback system whereby the user can learn much faster than possible with past

brain-computer interfaces.

Combined together, these components demonstrate a promising new approach to allow

patients with motor disabilities to communicate faster, more intuitively and learn to use

their new interface faster. Further, thanks to the Braille modality, the system is language-

independent and can easily provide function even for non-English speakers. These im-

provements bring patients closer to having a more versatile and usable communication

system without extensive, costly customization.
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CHAPTER 3

RELATED WORK

3.1 Brain Computer Interfaces

Many different BCI systems have been developed over the past decades, but the most well-

known of these is the P300 Speller [13], out of which several improvements [14] and vari-

ations [15] have been made. The P300 Speller utilizes a visual 2D grid containing letters,

where the user first chooses a row and then a column. By repeating the process, they can

form phrases to communicate. Researchers have augmented the P300 Speller with other si-

multaneous actions or attempted different electrode placements with mixed success. Since

then, different invasive [14] and non-invasive [16] methods have been tried to achieve better

usability, communication rates and accuracy.

Figure 3.1: An example visual grid used by the P300 speller.

The most common method for non-invasive brain-computer interfaces is electroen-

cephalography (EEG). EEG sensors are often cheap and easy to develop, but also come

with shortcomings such as a vulnerability to motion artifacts. Past non-invasive BCIs using

EEG signals have been able to achieve up to 21 characters per minute using visual evoked
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potentials [5]. Unfortunately, visual evoked potentials require intense visual attention from

the user, making the systems difficult to learn and use.

3.2 Functional Near-Infrared Spectroscopy

Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging approach

using near-infrared light to detect changes to hemoglobin concentration in the brain [6].

fNIRS has recently gained attention in the neuroimaging field as a more portable alternative

to an older method, functional magnetic resonance imaging (fMRI) [17]. Both fNIRS and

fMRI rely on measuring the hemodynamic response, unlike methods such as EEG which

measure electrophysiological activity.

Advances in fMRI-based brain computer interfaces can often be translated to fNIRS,

due to similar hemodynamic properties in both neuroimaging methods. The blood-oxygen-

level-dependent (BOLD) signal measured by fMRI correlates directly with the oxygenated

hemoglobin levels measured by fNIRS [18]. While fMRI has been studied for much longer,

hardware constraints pose difficulties that make a wearable BCI using fMRI nearly im-

possible. Therefore, the portability of fNIRS-based BCIs allow for a much more usable

interface.

3.3 Modalities of BCI Interaction

In addition to different types of hardware and neuroimaging methods, brain computer in-

terfaces make use of different forms of sensorimotor activity. The primarily modalities in

brain-computer interfaces for communication are visual [19], audio [20] and movement [2].

These are often paired with cues and stimuli in the corresponding modality to standardize

communication. For example, the P300 Speller described in section 2.1 functions by con-

stantly showing the user a visual stimuli during usage. Sometimes, an alternative modality

is more useful: Movement-based BCIs can be paired with tactile stimulation [21], or even

have no stimulation at all [22].
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Interaction modalities based on the movement of a subject can further be divided into

three: Imagined movement, attempted movement and executed movement. Imagined move-

ment is movement that the users make entirely in their head [23]. Attempted movement is

when the user tries to move a part of their body while executed movement is when the

attempted movement successfully moves a part of the body. There is little distinction be-

tween attempted and executed movement in healthy users, but the difference becomes crit-

ical for people with movement disabilities. Executed movement includes visual feedback,

feedback from the muscle and intermediary motor control areas [24].

My work primarily focuses on attempted movement, as this approach has the greatest

potential in assistive interfaces for users with movement disabilities. Executed movement

is often limited to a few muscles in ALS patients, and entirely impossible in those with

locked-in syndrome [2]. Meanwhile, imagined movement has often been the subject of

scrutiny due to its low accuracy compared to attempted movement [25].

Past work investigating attempted movement in BCIs has typically used different hand

motions such as visually cued selection tasks [21], tapping [25] and American Sign Lan-

guage gestures [26]. Attempted movement is also currently the most efficient modality of

BCI communication. Using attempted handwriting, a paralyzed subject with an invasive

BCI was able to achieve up to 90 characters per minute, the highest information transfer

rate so far [22]. Compared to such methods, full-body attempted movement allows easier

recognition thanks to the distribution of body regions across the motor cortex.

3.4 Passive Learning

Passive learning is the phenomenon of acquiring knowledge through stimuli at the pe-

riphery of attention [27]. Passive haptic learning (PHL) uses vibrotactile stimulation in

different regions of the body to help users learn patterned, rhythmic motions without any

effort. Early work on PHL focused on learning how to play the piano, demonstrating

that passive haptic learning does not require attention and can effectively reinforce learned
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movements in users [28]. PHL has been used to train users in a variety of communica-

tion modalities, such as typing in Braille [11] and morse code [29]. The success of these

training approaches, especially in Braille, demonstrated the possibility that BrainBraille

could be reinforced passively to teach how to use the brain-computer interface. More re-

cently, passive haptic learning has been demonstrated to help with rehabilitation as well,

demonstrating alternative potential uses for people with motor disabilities [12].
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CHAPTER 4

METHODS

4.1 Data Collection

The fNIRS data for my research was collected using a NIRx NIRSport device. The NIR-

Sport is a wearable multi-channel fNIRS system which uses a flexible headcap that stretches

around the user’s head. The hardware consists of 39 optodes, divided into 16 infrared light

sources and 23 detectors. There are also 8 additional short-distance detectors to detect and

control for blood flow in the scalp. The custom montage I made for these optodes and

short-distance detectors focused on the intersection of the frontal and parietal lobe, where

many of the motor regions relevant to my work can be found. While most of the optodes

were above the typical location of the primary motor cortex, extra care has to be taken in

placing optodes with hemodynamic signals as cerebral blood flow can homogenize hemo-

dynamics across different brain areas. I highlight the brain regions on the right hemisphere

of the diagram below, in particular including the regions of the primary motor cortex (M1)

relevant to hand movements according to literature [30].
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Figure 4.1: The arrangement of different channels on a model of the scalp. Sources are
colored red while detectors are colored blue. Short channels highlighted with blue rings,
arranged around different sources. Right hemisphere shows brain regions below optodes.

The data collection was performed in a confined, controlled environment to avoid any

noise in the data. To ensure that the signal wouldn’t be affected by irrelevant sensorimotor

activity, the participant was put into a dark room with electromagnetic shielding and no

sound. The participant was instructed to lie down after putting on the NIRSport. Lying

down on a comfortable surface is a necessary step for avoiding noise from passive motor

activity while sitting or standing. The study used a visual cue to prompt the participant on

what activity to perform, which may have caused some noise, particularly in optodes close

to the posterior parietal cortex (PPC).
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4.2 Study Design

In order to evaluate whether fNIRS was feasible for reliably classifying movement in dif-

ferent parts of the body, I performed a study based on transitions in activity between two

body regions: flexion of the fingers on both hands. Examining both hands was a good pro-

totype for a more expansive study in the future, as the left and right hand typically provide

notably distinct signals that are lateralized to one hemisphere of the brain.

The study consisted of two participants, P1 and P2. P1 is healthy, right-handed, 25

years old and male while P2 is healthy, left-handed, 21 years old and non-binary. For my

current studies, healthy users were preferred as ALS patients can be difficult to access and

performing tasks in a lab environment may come with great difficulties. A limited number

of participants was used for this study due to COVID limitations. The fNIRS headcap on a

participant is shown below.

Figure 4.2: The NIRSport fNIRS headset on a study participant.

Data was collected from each participant over a 15-minute duration with 30 trials during

which the participant either flexed first their right hand, and then their left hand or first their

left hand and then their right hand. Each hand was flexed for 6 seconds, followed by a 15-

second rest during which neither was flexed. The left-to-right and right-to-left trials were

distributed in a random order and prompted by visual cues on a computer screen.
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4.3 Hemodynamic Signal Processing

Hemodynamic signals reflect complicated blood flow dynamics across the entirety of the

brain, and the signals must be pre-processed before they are sent to a classifier model. The

signals are initially collected as a XDF file from the NIRSport, including the oxygenated

and deoxygenated fNIRS time series as well as metadata about the channels with their

locations.

The most relevant channels from the time series were identified using a Generalized

Linear Model (GLM). The GLM was fitted to a designed regressor approximating what a

hemodynamic response should ideally look like based on the participants’ heart rate and

the timing of the left and right hand gestures. The derivative and dispersion derivative

were calculated for both the regressors and the time series from the data. After fitting the

GLM, the weights given by the GLM for each channel were used to determine the t-scores

for discriminating left hand, right hand and their differential. Channels for oxygenated

hemoglobin (HbO) and deoxygenated hemoglobin (HbR) were identified separately by

searching for positive t-scores with oxygenated hemoglobin and negative t-scores with de-

oxygenated hemoglobin. Channels that showed a strongly positive or strongly negative

response to both left and right hands were excluded as they didn’t have any discriminative

power. These were used to select the channels to be used in the time-series support vector

machine (SVM), with channels that were below a 70% quantile threshold discarded.

After channel selection, I applied a 0.09Hz third-order low-pass Butterworth filter to

remove hemodynamic noise due to the heart rate (1Hz), breathing rate (0.3Hz) and Mayer

waves (0.1Hz), which are oscillations in arterial blood pressure due to baroreceptors. The

0.09Hz number was determined based on past literature in fNIRS signal processing, which

showed that it’s the most common frequency to apply the filter at [31], in particular because

it can filter out Mayer waves. The figure below shows how the filter was used to clean the

signal.
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Figure 4.3: Signal from a channel determined to be useful during channel selection, before
and after low-pass filtering.

4.4 Classification

For classification, I segmented each gesture epoch by selecting the 120 samples after each

event starting a left to right or right to left sequence. 120 samples is equivalent to 24 seconds

given the 5Hz rate of the NIRSport headset, which included six seconds of left hand tension,

six seconds of right hand tension and twelve seconds of rest. However, due to the time

delay of hemodynamic signals, some of the effects of the hand tension were only visible up

to three seconds after the participant first started tensing their hand. Within the extracted

epochs, I only included the channels from the previous selection, testing oxygenated and

deoxygenated responses independently as well as together.

Afterwards, I used independent component analysis (ICA) to reduce the dimensionality

of the data. Then, I used a time-series support vector machine (SVM) from the Tslearn

package for binary classification between the two hands. The parameters for these algo-

rithms were tuned using a cross-validated grid search approach. A separate test set beyond
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cross-validation was not created due to the small size of the dataset. Then, the final results

were determined using a 5-fold stratified cross-validation with the final, tuned model for

each participant.
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CHAPTER 5

RESULTS

Based on the GLM described in the Methods section, I identified which channels were the

most relevant to the discrimination of the left and right hand signals. The weights given

by the GLM for both participants are shown in the figure below. After calculating the t-

scores for each of these channels, I identified the most relevant channels by thresholding

scores above the 70% quantile. Oxygenated (HbO) and deoxygenated (HbR) channels that

had the largest difference between the left and right hand were selected from among these

channels. The selected channels for both P1 and P2 are shown in the table below, reported

according to the international 10-5 EEG placement system. Selecting different channels for

each participant was necessary for accurate and meaningful results as there is significant

individual variance in localized areas of activity, cerebral blood flow and headset fit.

Figure 5.1: P1 above and P2 below. The weight given to the hemodynamic response, its
derivative and dispersion derivative for each fNIRS channel in left and right hand by the
GLM.

Based on their locations, these channels are primarily in the lateral portions of the

channel arrangement and in the frontal lobe. The locations are close to where the motor

responses in M1 should be based on past literature, although some of the channels selected

15



Participant Left > Right, Oxygenated Left > Right, Deoxygenated Right > Left, Oxygenated Right > Left, Deoxygenated

P1
CP1-CCP, CP1-C1, CP1-P1,
CP1-CCP, CPP3h-C, CP3-CCP,
CCP4h-C

CPP1h-C, CP1-P1, CPP3h-P,
CPP3h-C, FCC3h-C, FC3-FFC,
FCC5h-F, CCP2h-C, CCP4h-F,
C4-CP4, C4-FC4, CCP6h-F,
FFC6h-F

P2-CP2, C2-FCC, C4-CP4,
CCP6h-F, FFC6h-F

C4-FCC, CCP6h-C, FC6-FCC

P2
FCC3h-C, FC3-C3, FCC5h-C,
CCP4h-C, C4-FCC, CCP6h-C,
CCP6h-F

CP1-C1, FCC5h-C, FC5-FFC,
FC5-C5, P2-CPP, FFC6h-F,
FC6-FCC

CP1-CCP, CP1-C1, CP1-CCP,
CPP3h-P, FCC5h-C, P2-CPP2h,
P2-CPP4h, CCP4h-C, FC6-FC4,
FC6-FCC

CPP1h-C, FC3-C3, P2-CP2,
CCP6h-C, FFC6h-F

Table 5.1: Selected oxygenated (HbO) and deoxygenated (HbR) channels for P1 and P2
in the 10-5 system. The Left > Right and Right > Left channels were combined during
classification.

Participant HbO + HbR HbO HbR
P1 87% 80% 93%
P2 70% 70% 70%

Table 5.2: 5-fold cross validation accuracy for P1 and P2 using different sets of selected
channels with ICA and SVM.

were more lateral than expected, suggesting they may be coming from the sensory cortex in

the parietal lobe or from different motor regions than the hand. Another explanation could

be that this effect was caused by the fit of the headset on the participant’s head, particularly

due to hair getting in the way of the fabric headcap.

The pre-processed time series data from the selected channels was then used in the

classification section of the pipeline. The grid search optimization found that a SVM with

a sigmoid kernel and ICA with 10 components got the best results. The best accuracy for P1

and P2 were 93% and 70% respectively, determined using five-fold cross validation across

all 30 samples. Notably, the best accuracy was observed when only using deoxygenated

(HbR) channels for classification. Results were also attempted using different selections of

channels between oxygenated, deoxygenated and their combination, which are shown in

the table above.
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CHAPTER 6

DISCUSSION

6.1 Limitations

The current study was performed with a small number of participants due to COVID-19

constraints as well as the time-consuming procedure for collecting fNIRS data. The current

study was intended to demonstrate the possibility of a motor activity-based wearable fNIRS

interface and did not attempt generalizability. I anticipate that an exclusion criteria would

be necessary when more participants are included in future work. Neither a user-adaptive

or user-independent model was attempted due to the limited participants as well as the

difficulty of constructing these models for neural activity.

The delayed nature of hemodynamic responses necessitated longer durations for record-

ing each trial, in particular with long rest sessions. Otherwise, signals from different move-

ments would merge to make a very noisy dataset. However, this also reduced the total trials

per participant to 30, and the 5-fold split used for testing meant the results were only based

on a few trials for each fold with no separate held-out test set. The duration constraint

also greatly limited the information transfer rate of the interface. A possible solution could

be to combine it with EEG sensors, taking advantage of the reliability of hemodynamic

responses and performing early classification on it while using EEG to get more instanta-

neous responses due to attempted movement. Combining fNIRS with EEG would increase

the robustness to artifacts in each signal, as some artifacts exclusively affect blood flow or

electrophysiology and not the other.

All users in the present study were healthy and any attempted movement would also

result in executed movement. Testing on healthy participants brings three limitations that

impede the results from translating to brain-computer interfaces for ALS patients. Firstly,
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executed movement often results in motion artifacts that impede the data, by altering blood

flow in the case of hemodynamic signals and by shifting skin across the body. Secondly,

executed movement results in sensory feedback based on the motion, meaning some of the

detected activity may have been in the sensory cortex rather than the motor cortex. Thirdly,

there are notable differences in the brain structure of ALS patients due to their conditions

and both neural activity and blood flow would be altered as a result. It would be critical to

test the system with ALS patients in the future, but significant work is needed before the

interface is ready for being used with patients due to the strenuous nature of using BCIs

with attempted movements.

6.2 Future Work

Future work will aim to both increase the number of participants and eventually, work with

the target demographic of ALS patients. The former will increase the generalizability of

BrainBraille and make the results more reliable while the latter will bring it closer to being

a tool that can be used by patients themselves. However, doing both at the same time is

unlikely due to the difficulty of finding groups of patients for such a study.

The current classification was performed using a time-series support vector machine for

convenience. In the future, these results could be improved by using Hidden Markov Mod-

els (HMMs) or Recurrent Neural Networks (RNNs). Both models have shown promise and

could enhance accuracy in the future. Alternatively, Zhao et al.’s approach of combining

Viterbi decoding [10] with a support vector machine could be promising when using the

system with a language-based format instead of the current two-hand experiment. Early

classification models could also be beneficial to respond to the delayed hemodynamic re-

sponse quickly, increasing the information transfer rate of the future interface. With early

classification, it would be critical to find a balance between accuracy and speed, especially

considering the application to ALS populations may already necessitate delays between

attempted movements due to their exhaustion.
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I also hope to further investigate transitional gestures. Transitional gestures make use of

the transitional states when a user is switching between actions to obtain more information

from behavior. The current study’s approach with the left-to-right and right-to-left move-

ment was based on this idea. In future gesture-based brain-computer interfaces, transitional

gestures can allow more information to be encoded within the communication and for com-

munication to happen with greater speed. The six-region setup of BrainBraille as used by

Zhao et al. only allows up to 64 different characters, obtained when the user makes the

motion in all body parts concurrently. However, transitional states between six regions can

allow up to 180 different characters when the concurrency requirement is relaxed thanks

to the different possible permutations. It can also make communication faster, as the user

can simply switch between different regions over time, instead of activating a region for

some time and keeping it active to be recognized. Switching between regions would be

particularly useful for ALS patients who are easily strained after movement tasks due to

their muscular dysfunction.

Finally, future work will attempt to use passive haptic learning to allow the system

to be learned passively. The addition of PHL would significantly enhance the usability

and learnability of the brain-computer interface, giving an advantage to brain-computer

interfaces using movement over visual alternatives. Passive learning would significantly

reduce the time required to introduce a patient to the interface and particularly reduce the

amount of physical exertion needed. PHL could also allow customization based on the

functioning muscles of ALS patients who are not locked-in, assisting them with retaining

muscle control and enhancing their communication capabilities.
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CHAPTER 7

CONCLUSION

In this dissertation, I explored an attempted movement-based alternative gestural brain-

computer interface called BrainBraille. BrainBraille can allow ALS patients who have

very limited or no control over their muscles to communicate at the phrase level with much

higher text entry rates than past non-invasive brain computer interfaces. BrainBraille would

allow ALS patients to communicate in complex sentences rather than simple commands,

giving them more flexibility over their interactions. BrainBraille has various other improve-

ments over past brain-computer interfaces that makes it more user-friendly. Compared to

the common visual modalities in other non-invasive brain-computer interfaces, BrainBraille

does not demand the user’s continuous visual attention.

In an early study, I expanded recent work on BrainBraille with fMRI to enable its use

in a wearable, mobile setting using fNIRS. I designed a machine learning model that can

classify between attempted movement in the two hands with up to 93% accuracy even with

limited samples using a support vector machine. My work pointed a promising direction

towards wearable usage of BrainBraille as using fNIRS would allow BrainBraille to func-

tion better when a user is in motion, and make it more comfortable than EEG-based sensing

approaches which may require abrasive gel to acquire a reliable signal.

BrainBraille has great room for expansion and demonstrates the potential of gesture-

based brain-computer interface modalities using attempted movement. In the future, us-

ing transitional gestures with the six-region pseudo-binary encoding can allow for a much

wider range of characters to be communicated at higher information transfer rates than the

present version of BrainBraille. Moreover, the potential of passive haptic learning could

make it the first brain-computer interface to be learned without conscious effort from its

user.
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