Team RCMakers’s Technical Report for the DJI
RoboMaster Al Challenge at ICRA 2018

Ali Cataltepe*, Ege Caglar!, Tan Gemicioglut
Robert College, Istanbul, Turkey
*ali @cataltepe.com, 'egel1358 @gmail.com, ‘tan@gemdata.com.tr

Contents

1 Hardware 1
I-A Mechanical Description . . . 1

I-B Sensors 1

I-C Computers 2

II Software 2
1I-A Detection 2

II-Al Algorithm 2

II-A2 Performance . . . 3

1I-B Localization 3

II-C Decision-making 4

II-C1 Simulation 5

I-C2 Reward Metric . . 5

II-C3 Performance . . . 6

I Video 6

1. Hardware

A. Mechanical Description

We had to modify the internal middle cage of
the Robomaster Al Robot in order to fit the Jetson
TX1, the computer that we chose to use as the
robot’s controller, and the Scanse Sweep LIDAR.
The platform carrying the shooter was also raised
for this purpose but its height was still within the
constraints stated in the rules manual. No outside
components were added to the cage or the robot
except the custom-built platforms for both Jetson
TX1 and Scanse Sweep. An external USB web cam-
era, Microsoft Lifecam HD-3000 was placed on top
of the turret mechanism for visual recognition and
targeting purposes. A powered USB hub was also
installed to allow the Scanse Sweep and Lifecam
HD-3000 to be simultaneously connected to the
Jetson TXI1.

B. Sensors

In order to be able to detect obstacles and other
robots in every direction, a LIDAR was required on
the robot. The LIDAR sensor was mainly used in the
localization module of the robot. The localization
module used the sensor to find the position of the
robot relative to the obstacles in the map. The
distance to the perceived obstacles (or the distance
to the Protection Fence if none are detected) in every
cardinal direction was also fed to the LSTM network
in the decision-making module. We also needed a
camera to make sure we detected other robots, better
predict their position and for finding and targeting
enemy robots’ armor modules.

Due to its range and affordable price, the Scanse
Sweep v1.0 LIDAR sensor was used as the 2D
LIDAR in the robot. The sensor’s horizontal field
of view is 360 degrees, while its vertical field of
view 1s 0.5 degrees. It has a range of 40m with a
75% reflective target, has a maximum sample rate
of 1075 Hz and has a rotation frequency of 1-10

Fig. 1. The middle section of the robot with plates removed to make
added components visible

Fig. 2. LIDAR sensor measurements

Hz. It is connected to the NVIDIA Jetson TX1
by the USB hub and it is used to provide a sen-
sor_msgs_/LaserScan message to the localization
module as seen in Figure 1. The Scanse Sweep
normally has a UART output but it’s connected
using a USB-to-serial converter to a powered hub
as the Jetson TX1’s UART and USB ports cannot
supply enough power for the Sweep.

The Microsoft Lifecam HD-3000 Webcam was
used as the camera of the robot. The camera has a
resolution of 1280 X 720 pixels for videos, has a
maximum frame rate of 30 FPS, has 68.5 degrees of
diagonal field of view and has fixed focus from 0.3m
to 1.5m. The camera is connected to the NVIDIA
Jetson TX1 by the USB hub and used with the
OpenCV library in the detection module.

C. Computers

Aside from our personal computers, there are
two main computers we have currently used for
the challenge. On our robot, we use a Jetson TX1
Development Kit by NVIDIA. Its specifications can
be found in Figure 3.

For training, we used a custom-built computer
running Ubuntu. It has a Intel 17-4790K CPU and
16GB of 2400MHz DDR3 RAM. The most impor-
tant component for the simulation is the GPU, a
NVIDIA GTX 960. Running our LSTM network
with Tensorflow allowed our training to be acceler-
ated by NVIDIA’s CUDA toolkit.

During the final week before ICRA 2018, we
plan to finalize the parameters of our system and
use a NC6s_v3 Linux Virtual Machine by Microsoft
Azure to do a extremely accelerated training for one

Jetson TX1
NVIDIA Maxwell

™ 256 CUDA cores
Quad ARM® A57/2 MB L2
4K x 2K 30 Hz Encode [HEVC)
4K x 2K 40 Hz Decode (10-Bit Support]

4 GB 64 bit LPDDR4
23.6 GB/s

2xDSI, 1xeDP 1.4 /DP 1.2/ HDM

Up to é Cameras (2 Lane]
CSI2 D-PHY 1.1 (1.5 Gbps/Lane)

Gen 2 | Txd + 1x1
16 GB eMMC, SDIO, SATA

UART, SPI, I2C, 125, GPIOs

Fig. 3. Specifications for the Jetson TX1

day. It has 6 cores of Azure vCPUs, 112 GiB of
RAM and a V100 NVIDIA Tesla GPU optimized
for high-performance Als.

II. Software
A. Detection

1) Algorithm: The detection module uses the
camera and LIDAR module to detect other robots,
their locations, whether they are an ally or an enemy,
the highest to-hit probability of their armor plates
and the aiming angle to the armor plate with the
highest to-hit probability. To be able to provide this
data, the detection module uses the camera module
and detects the LED strips next to the armor plates.

Using the OpenCV library, the module first desa-
turizes the video feed and uses a simple threshold to
identify any bright objects in front of the camera.
The video feed is also fed to two different RGB
filters, one detecting red and one blue in order
to detect the LED strips. Results from both RGB
filters are combined separately with the result from
the threshold filter to get two separate processed
video feeds, one highlighting the red lights and one
highlighting the blue lights. The module then detects
the strips of light as rectangles and only considers
the ones with a height more than its width in order
to eliminate the lights on top of the Referee Module.
The module then takes the centers of these regions
and matches them to the closest neighbor center,
creating a model for the armor plates. Since the
actual proportions of the armor plates are known,

Fig. 4. Diagram outlining the software structure

the distance and the area of the plate is calculated
for every plate.

The detection module then uses the LIDAR data
and the angle of the camera to find the distance
to the robot. Using this knowledge, the detection
module finds the location for each robot seen and
publishes this information to the decision-making
module. The module then selects the enemy robot
which has the armor plate with the highest area and
calculates its to-hit probability (based on the area
of the selected armor plate) and its angle depending
on the camera, publishing the information to the
decision-making module and the control module.

2) Performance: The detection module has a
maximum frequency of 20 Hz, which is sufficient
for the robot since the decision-making module can
only operate in 10 Hz. The detection algorithm can
detect armor plates up to 160 cm for stationary
targets. To increase the accuracy of the algorithm,
we are currently trying to train a YOLO CNN model
as described in the technical proposal, since the
accuracy can fall especially when the camera angle
is diagonal to the robot and especially because of
the red or blue light given by the RFID module
under the robot.

Data generated in simulation
instead of gg;i;nmdums " Robot HP Referee UWE Localization Module
System
Simulation |- v
Decision
LSTM |« _ Localization |
Robot t d LIDAR
obot position an -
Network velocity
Obstacle y 1
Avoidance v
Detection |
LSTM Obstacle distance, - Camera
A\ . armor plate
Low-Level Tralmng visible, enemy
Robot positions
opo
Control - Turret Aiming

B. Localization

The localization module uses the UWB Lo-
cation Module and a LIDAR sensor to estimate
the position of the robot. The module first takes
data from the Scanse Sweep LIDAR modules and
converts it to a sensor_msgs/LaserScan message.
Since the LIDAR sensor is located inside the
robot, any parts surrounding the LIDAR can lead
to false measurements, therefore, we remove them
before converting the data to a LaserScan mes-
sage. The message is then used by an Adap-
tive Monte Carlo Localization algorithm with the
static map seen in the RoboRTS package to get a
geometry_msgs/PoseWithCovarianceStamped mes-
sage. This message is then combined with the UWB
Location Module and its approx. 10 cm uncer-
tainty and normalized to get the pose estimate and
uncertainty of the robot. Using this method, we
achieved a result with less uncertainty than both the
uncertainty in the UWB Location Module and the
LIDAR sensor.

Since we didn’t have the resources to make a to-
scale practice field, we couldn’t test the accuracy of
the robot in real life. However, we tested the AMCL
node in Gazebo by simulating LIDAR sensors.
In the simulation, the pose converged after 20-40
seconds in the beginning of the match and had an

Reward metric

game_state
. . Decision-making
LSTM node
Decision (String)
unpause load trained model

if A> 0, given decisions as labels

if |A Reward metric| > threshold, pause

if A <=0, any decisions except given as labels

Training
LSTM node

send recorded inputs since receive current

last A as data

state & model,
train on data for
10 epochs,

save model

Vel

Fig. 5. Diagram showing the training process

approximate uncertainty of 40 mm.

Additionally, because of the localization module’s
uncertainty, we added an obstacle avoidance node
that will block any command from the Decision-
making Module to go in a direction if the LIDAR
measures an obstacle in that direction closer than
40 mm to the robot.

C. Decision-making

We found that there were two main paths we
could take for what we wanted our learning sys-
tem to output: High-level macroactions such as
travelling to a position and taking aim, or low-
level atomic decisions such as moving forward or
shooting. As we planned to use a RNN for our
main system structure, predicting and picking the
best option out of a set of predetermined actions
would be much more easier than trying to generate
coordinates. This also eliminated the need for sep-
arate local and global planners, as the maneuvers
of a properly-trained recurrent neural network will
result in the emergent generation of strategies in and
of themselves.

As detailed in our Technical Proposal, all
decision-making and planning has been delegated
to a Long Short-Term Memory network (with a cell
size of 150 followed by a fully-connected layer of
20, terminating in a softmax classifier with length
equal to the number of maneuvers to choose from)
outputting the probabilities with which to weight
a random choice between a finite set of mutually
exclusive atomic maneuvers at approximately 10
Hz. Due to an inability to secure the computing
power necessary to run (in real time) and train
a convolutional neural network that would extract
features from a top-down RTS view of the arena, we

elected to numerically represent the game state for
to the robot via the following features in a custom
game_state ROS message format:
o The 2D linear and angular velocity of the team
robot in a Twist message
o The 2D position and orientation of the team
robot in the frame of the arena contained in a
Pose message
o The estimated 2D position of the enemy robot
if detected or the last visible 2D position of the
enemy robot in a Pose message
o The relative area of the enemy armor plate
currently targeted by the targeting system in
the FOV of the robot’s camera
« The distance to the nearest obstacle to the front,
back, left, and right of the robot
o Current game time (in units of ticks increasing
after every action, making a total of 1800 ticks
for a round)
o The current HP of the robot
A reward metric (detailed under “Reward Met-
ric”’), which was not fed directly into the neural
network but processed by the decision-making node
to decide when to train during simulated sessions
The moves from among which the LSTM could
choose were as follows. Each move, with the excep-
tion of shooting, which would shoot a single ball,
were treated as continuous until a different decision
was published:
o Move forward
o Move backward
o Strafe left
« Strafe right
« Rotate left
« Rotate right
o Stop
« Shoot

As the shooting maneuver was tied to a pre-
existing trigger subroutine and the decisions were
published at a maximum frequency of 10 Hz to
begin with, it would not be possible to exceed
limitations on firing frequency or speed.

The algorithm was implemented in Tensorflow
using a dynamic_rnn accepting input batches of
length 1 (one game_state message), with the state
being manually saved and updated as new data was
received to effectively execute a real-time LSTM.

The trajectory generation LSTM was initially
trained using using supervised learning based on a
limited number of human-vs-human matches. The
longer training process for the LSTM was accom-
plished via a Policy Gradient in Al-vs-Al matches
in a simulated arena implemented in Gazebo. The
training process during a given match for each Al
agent was as follows:

1) Two ROS nodes running two different copies
of the model were initialized, one for out-
putting decisions and the other for training the
decision-making copy

2) The decision-making copy saved each game
state, here referred to as the nth game state,
inputted to it into a list containing a sequence
of game states starting from the state in which
the game started and ending, in sequence,
at the second, third...n-1th and nth states. It
also saved each decision actually inputted to
the game (via the random decision process
weighted by the LSTM’s output) as a one-
hot vector, effectively creating a series of
sequences and labels for a sequence classi-
fication task ending at each given game state.

3) If the reward metric when a game state was
received was found to have changed by more
than a predetermined threshold since the start
of the match or the last training session, the
game was paused and the LSTM’s state at
the end of the last training session was saved.
If the change was negative, each output one-
hot vector had its 1.0 unit changed to zero,
with the rest changed to have a probability
of 0.14 (1.0/7) (training would reward any
decision except that which was outputted). If
the change was positive, the labels remained
unchanged (training would reward the deci-
sion that was outputted).

4) The training model was started, and the input
sequences and outputs were fed to it as a

training dataset for a sequence classification
task to be backpropagated on using an RM-
SProp optimizer for 10 epochs. After this, the
model’s new variables were saved and loaded
to the decision-making node, and the match
was unpaused.

The process with a human-controlled agent was
the same (input recording and automatic backpropa-
gation on a training model in response to changes in
a reward metric), except for the lack of a model to
output real-time decisions. The models trained using
human players were later initialized as the initial
decision-making models in the Al-vs-Al matches,
which could be accelerated as far as our hardware
allowed.

Fig. 6. Top-down view of the simulation

1) Simulation: We wanted our simulation to be
as minimalistic as possible for quick training and
only created basic models to allow for interaction
between the robots. The simulation generates
a game_state message and publishes it for the
decision-making node. Some of the data, e.g.
position and armor plate area are intentionally
noisy to simulate real conditions. The simulation
also detects the distance to the nearest obstacles
using lasers.

2) Reward Metric: Our reward metric (initialized
separately for each Al agent) was initialized at O
at the beginning of each match. Our predetermined
change threshold to initiate training was 10. Events
which would change the reward metric were as
follows:

« Hit taken from an enemy, -5
« Damage inflicted on an enemy, +5

« Entered and stayed in bonus zone for the time
required to activate its effects: +10
o Did not change location by more than 2m
within 5 seconds, -1
¢ Collided with an obstacle or robot, -3
o Within 10m of an enemy without taking dam-
age for 3 seconds, +2
The reward metric has gone through a few
iterations and we expect there to be more changes
before our final version. Currently, we are planning
on removing the condition for collisions and forcing
the robot to avoid collisions by integrating the
obstacle avoidance node into the simulation so that
it represents real robot behavior more accurately
and doesn’t confuse the LSTM network.

3) Performance: Matches were conducted 1vl
(to speed up initial testing), first with players and
later 2 separate copies of the model each randomly
selecting a version from among their most recent 10
end-of-game iterations of training to prevent overfit-
ting. After 50 human-conducted matches provided
a starting point for the models, the models were left
to conduct matches among themselves and train on
our test machine for 10 hours.

After training was complete, the model with the
highest win rate when on its own (52%, 3000
matches total) performed with a 70% win rate (100
matches) when matched against agents controlled by
entirely random choices. As we currently lack the
resources and time to set up a to-scale practice field
(let alone acquire other robots to test our models
against), we have not been able to test our decision-
making system on the actual robot.

For the next phase of training, the match setup
will be changed to 1v2 (as we could only secure
a single AI robot due to financial constraints) in
order to better represent the actual match. Our
game_state message and reward metric will also be
modified accordingly. We expect that training will
be somewhat slower but different, more successful
behavior will emerge on both sides of the match.

III. Video
Our demonstration video 18 available
on YouTube via the following link:

https://youtu.be/UunT6b04Frl
As we only have a single robot and cannot
build a practice field, our video is centered around

our simulation and more specifically our decision-
making system.

https://youtu.be/UunT6b04FrI

	Hardware
	Mechanical Description
	Sensors
	Computers

	Software
	Detection
	Algorithm
	Performance

	Localization
	Decision-making
	Simulation
	Reward Metric
	Performance

	Video

