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ABSTRACT
Camera-based text entry using American Sign Language (ASL)

fingerspelling has become more feasible due to recent advance-
ments in recognition technology. However, there are numerous
situations where camera-based text entry may not be ideal or ac-
ceptable. To address this, we present FingerSpeller, a solution that
enables camera-free text entry using smart rings. FingerSpeller uti-
lizes accelerometers embedded in five smart rings from TapStrap,
a commercially available wearable keyboard, to track finger mo-
tion and recognize fingerspelling. A Hidden Markov Model (HMM)
based backend with continuous Gaussian modeling facilitates accu-
rate recognition as evaluated in a real-world deployment. In offline
isolated word recognition experiments conducted on a 1,164-word
dictionary, FingerSpeller achieves an average character accuracy of
91% and word accuracy of 87% across three participants. Further-
more, we demonstrate that the system can be downsized to only
two rings while maintaining an accuracy level of approximately
90% compared to the original configuration. This reduction in form
factor enhances user comfort and significantly improves the overall
usability of the system.

CCS CONCEPTS
• Human-centered computing→ Interaction devices; Acces-
sibility technologies; Mobile devices.
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1 INTRODUCTION
Automatically recognizing American Sign Language (ASL) for its
approx. 500,000 Deaf and Hard-of-Hearing (DHH) signers [23] has
been an area of interest for decades [4] but little practical progress
has been made with respect to providing access to ASL recogni-
tion technology for the DHH community. Serving as an example
for this disconnect, gloves equipped with sensors are often meant
by researchers to be used to translate sign languages into text or
speech – yet they are typically not the first choice for the Deaf
community for convenience, practical, and utility reasons [4, 7, 14].
Firstly, gloves that are intended to translate signs into text or speech
fail to capture crucial linguistic features, particularly Non-Manual
Markers (NMM) [6, 7]. NMM include expressions such as eye gaze,
shifting the torso, lip movements, eyebrow movements and head
tilts; which–when used–can fundamentally change the meaning of
a sentence [2, 6]. Secondly, sign language gloves are supposed to
facilitate communication between DHH and hearing individuals.
However the burden is placed upon the DHH individual who has
to carry around the gloves, batteries, and computer. Wearing such
typically bulky equipment restricts the natural movements and
speed of signing [7].

In contrast, an often requested feature by the DHH commu-
nity are interfaces that recognize sign language [12] and connect
with personal assistants such as Alexa. However, there are privacy
concerns when using camera-based personal assistants, like the
personal assistant picking up on signs not meant for the device
[11]. In addition, smartphone cameras for sign recognition present
additional obstacles such as restrictive field-of-views (which may
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(a) (b) (c) (d) (e)
Figure 1: Overview of our data collection process using ring sensors and push-to-sign collection app. (a) Participant wearing the
sensors. (b) Participant collecting finger spelling data. (c) Statistics page providing key data collection statistics. (d) Recording
page where participants hold down the recording button while fingerspelling the specified word. (e) Summary page enabling
participants to view and delete recordings.

not fully capture the signer in the frame), poor lighting in the en-
vironment, power consumption of recording and uploading video,
and difficulty holding the camera while signing [21].

A potential compromise to aforementioned complications and
privacy concerns is the use of smart-rings for the recognition of
fingerspelling using the American Manual Alphabet (AMA). Such
a system alleviates privacy concerns, bypasses complications with
smartphone cameras, provides a more comfortable form factor
and can provide general text-entry which has a variety of use-
cases. Use-cases can potentially be texting, entering a query into a
search engine, filling out text fields, taking notes on the go, learning
and/improving fingerspelling, etc.

We propose FingerSpeller which utilize a 5 smart ring system,
not as a final system but as a means to test the feasibility of finger-
spelling recognition as well as experimenting with omissions of
rings to test accuracy with each ring omission. This paves the way
towards a smaller, more comfortable, and socially acceptable form
factor for its user. Our contributions are four-fold: we introduce
FingerSpeller, a camera-free system for fingerspelling recognition;
we evaluate FingerSpeller on data collected from three participants
and demonstrate that FingerSpeller can achieve an average 91%
character accuracy and 87% word accuracy; we further demonstrate
that the system can be reduced to 2 rings only while still maintain-
ing approximately 90% relative accuracy, allowing for increased
user comfort; and we introduce a dataset of FingerSpeller input that
includes 42,288 letters in 6,984 words collected by three participants
1

2 RELATEDWORK
Fingerspelling: Fingerspelling typically is used for names, nouns,
and adjectives in approximately 77% of fingerspelt words [25] and
can be at rates of 60-96 words per minute (WPM) [28]. In con-
trast, in a study with 37,000 smartphone typist, it was found the
average smartphone typing rate was 36 WPM [26], warranting the
exploration of text entry by fingerspelling as a significantly faster
alternative. In recent years substantial work has been made towards

1https://github.com/ZikangLeng/FingerSpeller

camera based fingerspelling recognition such as the release of the
ChicagoFSWild+ dataset [31] which has motivated the creations
of different recognition models and techniques [5, 9, 19, 27, 30]. In
addition, on May 10th, 2023- Kaggle launched a competition [1] to
develop camera based recognition models for fingerspelling recog-
nition to be used as an alternative keyboard for text entry for DHH
individuals. Despite the significant advancements in camera-based
fingerspelling recognition, error rates remain surprisingly high for
recognition at normal fingerspelling speed, and the exploration of
camera-free fingerspelling recognition remains a potentially desir-
able domain, especially if inconspicuous, off-the-shelf hardware
could be made available.
Alternative Text-Entry: While a growing number of interfaces are
designed for text entry, few are capable of silent, on-the-go input.
The Twiddler [20], a one-handed keyboard, enabled text entry at 60
WPM using chorded entry on a keypad. However, such interfaces
encumber one hand with the device, which has to be stowed when
text entry is not being performed. As an alternative, interfaces
have begun to use subtle wearable form factors such as earables
[32], glasses [15] and smartwatches [13] for the text entry system.
Silent speech interfaces have been proposed to enable hands-free
text entry at the speed of speech, with mobile input emerging as
a priority in recent research [17, 32, 33]. However, silent speech is
not always applicable and requires sensors to be near the mouth
and face.
Sensing with Smart Rings: The development of smart rings
dates to before 2000 utilizing embedded accelerometers to detect
finger taps [8]. Since then, a multitude of smart ring research has
focused on creating smaller form factors [16, 24] as well as creating
accurate recognition of gesture [36, 38, 39]. We are now at a point
where the hardware and software of smart rings can now be used
to explore new use cases. In a position paper by Gheran et al.,
the scientific community was urged to investigate smart rings as
an assistive technology for individuals with motor impairments
[10]. This call to action has spurred research into gesture input
methods for upper-body motor impairments [35]. ssLOTR [40]
explored custom-designed ring sensors for recognizing the AMA.
However, the focus of the classification was limited to individual

https://github.com/ZikangLeng/FingerSpeller
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letters, leaving word-level recognition and the potential application
of ring sensors for text-entry unexplored.

3 FINGERSPELLER
FingerSpeller is designed to identify isolated words fingerspelt us-
ing AMA, utilizing accelerometer signals captured by ring sensors.
The recorded data is subsequently processed through a backend
recognizer to translate the fingerspelled input into text. To person-
alize the recognizer, we created a push-to-sign collection app that
enables users to collect their own fingerspelling data and train a
personalized recognizer.

In our system, we utilized TapStrap [34], a commercially avail-
able ring sensor system. Each ring of TapStrap is equipped with a
tri-axial accelerometer, sampled at a rate of 200 Hz, with the ability
to transmit the accelerometer signal to smartphones via Bluetooth.
Figure 1(a) shows a participant wearing the sensors. In the AMA,
each letter is represented by a distinct handshape. From qualitative
observation in early experiments, we found that the unique finger
positions and orientations in each handshape can be captured by
the gravitation pull applied to accelerometer signals deriving a
unique signal profile for each letter, showing that our choice of
ring sensors can capture the variations in how different letters are
signed.

For personalized data collection, we developed a push-to-sign
collection app with three main pages: statistics, recording, and
summary. Figure 1(b) shows a user collecting fingerspelling data
using our app. The statistics page displays the meta information
(Figure 1(c)). During the recording process, users press and hold the
recording button on the app’s recording page (Figure 1(d)) to start
capturing their finger-spelling of the specified words. The button
was released after each word is recorded. After recording, users
can review the recorded words and corresponding video recordings
on the summary page (Figure 1(e)). They can choose to delete any
recordings with inaccurate finger spellings to manage data quality.
The app saves the timestamps, accelerometer signals, and word
start and end times at the end of each session

The collected 15-dimensional time series from five fingers are
first segmented according to the start and end timestep of eachword.
To recognize the word in a given sensor segment, we develop letter-
level Hidden Markov Models (HMM) following previous work [17].
Specifically, we further segment word-level sensor time series into
letter-level time series. We assume that each letter in a word is
fingerspelled in an equal duration of time and later take advantage
of Viterbi alignment to better segment the letters.

With the collection of letter-level sensor segments for 26 English
letters, we trained an 8-state HMM having a left-to-right topol-
ogy with no skip transitions. The emissions are modeled using a
Gaussian Mixture Model (GMM) with single mixture components,
whose parameters were estimated using the Baum-Welch algorithm
[3]. After training the 26 letter-level HMMs, we use them to infer
words from word-level time-segments using the Viterbi recognizer
from the Hidden Markov Model Toolkit (HTK) [37]. This gener-
ates the recognized letter sequence, for which we compute the
Levenshtein distance [18] to each unique word in the 1,164-word
MacKenzie-Soukoreff phrase set [22] (our dictionary). The word
with the smallest distance is selected as the recognized word.

4 EXPERIMENT
To evaluate the effectiveness of our system, we collected finger-
spelling data from three participants and designed a personalized
fingerspelling recognition model for each participant. P1 was a 25
year old Deaf male with native ASL fluency, P2 was a 19 year old
hearing male with conversational ASL fluency, and P3 was a 18
year old female with intermediate ASL fluency. Following previous
text-entry works [17], we selected the MacKenzie-Soukoreff Phrase
Set [22], which consists of 500 phrases with 1,164 unique words.
Each unique word was fingerspelled twice, resulting in a total of
2,328 words spelled by each participant. Data collection was carried
out at the participant’s leisure using a Google Pixel 4a smartphone
with our push-to-sign app deployed. Participants were instructed
to fingerspell words at a pace that felt most natural and comfortable
to them.

We evaluated our HMM-based backendwith the collected dataset
using a user-dependent 10-fold cross-validation protocol for each
participant, where 10% of the data is reserved for testing and the re-
maining 90% is used for training in each fold. We report the average
top-N (N=1,2,3,4) word and letter-level accuracies. We additionally
conducted experiments to determine the ideal number of rings re-
quired for fingerspelling recognition. Specifically, we iteratively
searched for the optimal configuration of the finger sensors by
reducing the number of rings used for fingerspelling recognition.
Starting with all five rings for evaluation, we removed a ring from
each finger one-by-one to find best four-ring configuration. The
four-ring configuration that showed least decrease in recognition
accuracy was selected. We repeated this process until using a single
ring for the evaluation. This greedy search approach finds an opti-
mal number of ring sensors while maintaining recognition accuracy
without trying all possible (5!) ring combinations.

4.1 Results
4.1.1 Top-N Word Recognition. Figure 2(a) shows the top-N (N
= 1,2,3,4) word and character accuracy for each participant. The
user-dependent model shows superior word accuracy on P1’s data,
achieving 94% as compared to P2’s and P3’s 83%. We attribute
this variation among participants to their different fingerspelling
speeds. P1, P2, and P3 fingerspelled at a pace of 27, 35, and 39 wpm,
respectively. The rapid speed of fingerspelling in P2 and P3 can
cause blurring in the transition between letters, posing a challenge
for the model to accurately recognize individual letters.

Seeing that the top-4 accuracy greatly surpasses the top-1 accu-
racy, yielding a 7% increase in word accuracy , we consider a user
interface that enables users to select words from the top 4 results in
future fingerspelling live text entry systems has the potential to fa-
cilitate and support user interaction, similar to the word suggestion
feature commonly found in mobile keyboards [29].

Finally, we ranked words based on their frequency of incorrect
recognition. Repeated letters in words were found to be particu-
larly prone to misrecognition. Across all participants, the top three
words most frequently misrecognized were steep, noon, and fell,
often misrecognized as step, non, and feel, respectively. The issue
lies in how repeated letters are signed. Participants explained that
they signed repeated letters by slightly shifting their hand to the
right while maintaining the handshape of the letter, resulting in an



ASSETS ’23, October 22–25, 2023, New York, NY, USA Martin & Leng et al.

P1 P2 P3
0

20

40

60

80

100
To

p-
N 

Ac
cu

ra
cy

 (%
)

94%
(97%)

84%
(87%) 83%

(89%)

97%
(98%)

87%
(89%)

90%
(93%)

98%
(99%)

88%
(89%)

93%
(95%)

98%
(99%)

89%
(89%)

94%
(96%)

N = 1 N = 2 N = 3 N = 4

(a)

P1 P2 P3
0

20

40

60

80

100

To
p-

1 
Ac

cu
ra

cy
 (%

)

94%
(97%)

84%
(87%) 83%

(89%)

95%
(97%)

82%
(86%)

83%
(89%)

91%
(95%)

81%
(85%) 79%

(87%)

82%
(90%)

72%
(81%) 71%

(80%)

47%
(60%)

60%
(72%)

46%
(59%)

TIMRP TIMP TIM IM M

(b)
Figure 2: (a) Top-N (N = 1,2,3,4) accuracy for each participant. Accuracy shown as word accuracy (character accuracy). (b) The
top-1 accuracy for each participant when data from the best N-ring configuration (N = 1,2,3,4,5) are used for training and testing.
Letters (T, I, M, R, P) denotes the fingers (thumb, index, middle, ring, pinky) that rings are worn.

unclear transition between repeated letters in the accelerometry
signal that the recognizer struggles to classify.

4.1.2 Toward Smaller Form Factor. Figure 2(b) illustrates the top-1
word and character accuracy achieved by each participant when
utilizing different N-ring configurations (N=1,2,3,4,5) for training
and testing. We observed negligible change in performance upon
removing the data collected from the ring worn on the ring finger.
This indicates that the ring did not effectively capture meaningful
information regarding fingerspelling. We further noticed that by
solely utilizing data from the rings worn on the index and middle
fingers, the model achieved a relative word accuracy of 85% − 88%
and a relative character accuracy of 90% − 93% when compared
to the model trained and tested on data collected from all 5 rings.
This attributes to the fact that the index and middle fingers alone
can capture the majority of variations in how letters are signed.
The highly comparable performance observed in this experiment
supports redesigning fingerspelling recognition systems, where
users would only need to wear 2 rings instead of the 5 rings, which
significantly reduces the burden on users in daily activities while
maintaining a decent level of recognition accuracy.

5 CONCLUSION
We introduced FingerSpeller, a camera-free American Sign Lan-
guage fingerspelling recognition system using smart rings. We
assessed the system’s performance by conducting tests on a dic-
tionary comprising 1,164 words. Our system achieved an average
character accuracy of 91% and word accuracy of 87% across three
participants. Moreover, we demonstrated that the number of rings
required for the system can be reduced from 5 to 2, while maintain-
ing approximately 90% relative accuracy.

While our current system is primarily designed for seated text
entry, it is crucial to explore the development of an on-the-go so-
lution that enables users to perform text entry while engaged in
other activities (e.g., walking). This expansion would greatly en-
hance usability and practicality of the system in everyday scenarios.
Also, our system performs word-level recognition, which needs to
be integrated to sentence-level delivery to enable live text entry

to make conversations. One possible approach is to introduce a
designated handshape and/or motion indicating spaces. By training
a separate model to detect where the space gesture is signed, we
can effectively segment the data and subsequently utilize it for
continuous word recognition, thereby facilitating live text entry.
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