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Abstract

The Tenth International Brain-Computer Interface (BCI) Meeting was held June 6-9, 

2023, in the Sonian Forest in Brussels, Belgium. At that meeting, 21 master classes, 

organized by the BCI Society’s Postdoc & Student Committee, supported the Society’s 

goal of fostering learning opportunities and meaningful interactions for trainees in BCI-

related fields. Master classes provide an informal environment where senior 

researchers can give constructive feedback to the trainee on their chosen and specific 

pursuit. The topics of the master classes span the whole gamut of BCI research and 

techniques. These include data acquisition, neural decoding and analysis, invasive and 

noninvasive stimulation, and ethical and transitional considerations. Additionally, master 

classes spotlight innovations in BCI research. Herein, we discuss what was presented 

within the master classes by highlighting each trainee and expert researcher, providing 

relevant background information and results from each presentation, and summarizing 

discussion and references for further study.
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1. Introduction

The Tenth International Brain-Computer Interface (BCI) Meeting provided a venue for 

trainees to present and receive feedback for their work in BCI. This paper is intended to 

highlight their work and the innovation occurring in BCI research. 

1.1 Purpose and organization of master classes

The master classes were organized by the Postdoc & Student Committee of the 

BCI Society, whose primary goal is to foster learning and engagement opportunities for 

trainees. Trainees submitting abstracts to the BCI Meeting could opt if they would like to 

participate in master classes. Abstract selection is based on evaluations by the Program 

Committee, considering reviewers’ scores, diversity, and inclusion. Trainees could submit 

their abstract under seven general themes including BCI implant - control, BCI implant - 

other, BCI non-implanted - control, BCI non-implanted - other, signal acquisition, signal 

analysis, and user aspects: experience, ethics, target populations. Out of 93 potential 

candidates for master classes, 42 trainees (45%) were selected. These trainees, along 

with 14 masters, were organized into 21 master classes. Of the 42 trainees, 34 were 

graduate students, 7 were postdoctoral fellows, and 1 was a medical student. Classes 

were held in seven parallel sessions on three separate days of the meeting.

The master classes are meant to promote opportunities for trainees to showcase 

their work and to encourage relaxed interactions with senior members of their field. The 

master class format is as follows: two BCI trainees present their work for 10-15 minutes 

and one senior researcher, or master, provides constructive feedback. Additionally, any 

participant of the BCI Meeting may attend a master class and take part in the discussion.

The summaries provided by the master class trainees in this paper create a 

convenient overview of the range of topics included in BCI research, and the challenges 

current BCI researchers face as they advance the technology and the field. We have 

divided the summaries into eight specific themes: speech decoding, motor imagery, BCIs 

for pediatric populations, platforms for closed-loop BCIs, deep learning applications, 

neurorehabilitation, sampling for sensorimotor BCIs, and novel BCI techniques for 

improved performance. For each summary, we report the trainee, the title of their 
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presentation, the initial theme, and the master assigned to each class, as shown in Table 

1. Each summary introduces the trainee’s presentation, their preliminary findings and their 

conclusions. Note, that ‘we’ within each summary refers to the trainee and their initial 

abstract submission co-authors. 

Theme Presenter Master Initial Theme Title

Julia 
Berezutskaya

Sergey 
Stavisky

Signal 
analysis

Optimizing feature selection for word 
decoding with high-density 
electrocorticography

Richard Csaky Christian 
Herff

Signal 
acquisition

Inner speech decoding from 
electroencephalography and 
magnetoencephalography 

Speech 
decoding

Maxime 
Verwoert

Sergey 
Stavisky

Signal 
analysis

Evaluating implant locations for a minimally 
invasive speech BCI

Daniel Polyakov Christian 
Herff

Non-
implanted – 
control

Recruiting neural field theory for motor 
imagery data augmentation

Sotirios 
Papadopoulos

Richard 
Andersen

Signal 
analysis

What is the exact relationship between beta 
band activity and hand motor imagery?

Valeria 
Spagnolo Ning Jiang

Non-
implanted – 
control

Towards co-adaptive BCI based on 
supervised domain adaptation: results in 
motor imagery simulated data 

Juliana 
Gonzalez 
Astudillo

Richard 
Andersen

Signal 
analysis

Network features for motor imagery-based 
brain-computer interfaces

Motor 
imagery 
BCIs

Satyam Kumar 
& Hussein 
Alawieh

Fabien Lotte
Non-
implanted – 
control

Transfer Learning Promotes Acquisition of 
Individual BCI Skills

Dion Kelly Camille 
Jeunet User aspects

The effect of gamified calibration 
environments on P300 and MI BCI 
performance in children

Joanna R.G. 
Keough

Camille 
Jeunet User aspects Mechanisms and Impacts of Brain-

Computer Interface Fatigue in ChildrenBCIs for 
pediatric 
populations

Araz Minhas David E. 
Thompson

Non-
implanted – 
other

Does my Child Know I’m Here? EEG 
Signatures of Parental Comfort for 
Disorders of Consciousness in a Critically Ill 
Child

Platforms for 
closed-loop 
BCI research 

Matthias Dold

Aysegul 
Gunduz & 
Andreea 
Ioana 
Sburlea

Implanted – 
control

Platform for closed-loop deep brain 
stimulation research: DAREPLANE

Yiyuan Han Christian 
Herff

Signal 
analysis

Offline Prediction of Prolonged Acute Pain 
by means of Convolutional Neural Network 
Model applied to Electroencephalographic 
Oscillatory Connectivity

Deep 
learning in 
BCIs

Alexander 
McClanahan Xing Chen Signal 

analysis
Decoding Visual Scenes from Visual Cortex 
Spikes Using Deep Learning
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Mousa Mustafa Marianna 
Semprini

Implanted – 
other

Decoding Invasive Brain Signals Using 
Deep Learning

Jose Gonzalez-
Espana Ning Jiang

Non-
implanted – 
control

NeuroExo: A Low cost Non Invasive Brain 
Computer Interface for upper-limb stroke 
neurorehabilitation at home

Florencia Garro Ning Jiang
Non-
implanted – 
control

Effects of Robotic Assistance in ERP 
Modulation for Upper-limb Exoskeleton 
Control

Exploring 
BCIs for 
neurorehabil-
itation

Angela Vujic David E. 
Thompson

Non-
implanted – 
other

Joie: An Affective Brain-computer Interface 
for Learning Mental Strategies for Positive 
Affect

Kriti Kacker Richard 
Andersen

Implanted – 
control

Spectral features of endovascular ECoG 
signals recorded from a Stentrode in 
human motor cortex

Christoph 
Kapeller

Christian 
Herff

Signal 
acquisition

Increased spatial resolution reveals 
separated EEG activation of individual 
finger movements

Advanceme-
nts in 
sampling the 
sensorimotor 
cortex

Simon Geukes Victoria 
Peterson

Signal 
analysis

Ultra-high-density electrocorticography 
recordings of the human sensorimotor 
cortex

Tan Gemicioglu Ning Jiang
Non-
implanted – 
control

Transitional Gestures for Enhancing ITR 
and Accuracy in Movement-based BCIs

Ceci 
Verbaarschot

Marianna 
Semprini

Implanted – 
other

The effect of artificially created sensory 
feedback on motor cortex activity during 
task performance

Michael Wimmer Marianna 
Semprini

Non-
implanted – 
other

Toward Hybrid BCI: EEG and Pupillometric 
Signatures of Error Perception in an 
Immersive Navigation Task in VR

Mushfika 
Sultana

Eli Kinney-
Lang

Non-
implanted – 
other

Assessing the impact of transcranial Direct 
Current Stimulation on the enhancement of 
race driving skills

Novel 
techniques 
for 
advancing 
BCI 
performance

Sara Ahmadi Xing Chen Signal 
analysis

A model-based dynamic stopping method 
for code-modulated visual evoked 
potentials BCI

Table 1. Summaries included in this paper and presented during the master 

classes, arranged by theme and following the same order as the sections.

2. Master class themes and summaries

2.1 Speech decoding

In recent years, there has been an influx of research focused on the potential use of BCIs 

as augmentative and alternative communication devices for patients with damage or 

degeneration of speech motor pathways [1,2]. Understanding optimal temporal and 

spatial neural recording resolution, advantages of different recording modalities (e.g., 
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noninvasive or invasive) or decoding strategies are a few aspects that are critical to the 

tailoring of speech BCIs for clinical populations. Additionally, there is increased interest 

in decoding covert speech and discerning the fundamental differences between covert 

and overt speech production [3]. 

2.1.a. Presenter: Julia Berezutskaya, PhD (University Medical Center, Utrecht, 

Netherlands)

Title: Optimizing feature selection for word decoding with high-density 

electrocorticography 

Master: Sergey Stavisky, PhD (University of California, Davis, USA)

Theme: Signal analysis

High-accuracy individual word decoding from brain activity is crucial for the 

development of speech BCIs for people who cannot speak due to paralysis [4]. Here, we 

investigated a) how accurate word decoding is from brain signals obtained with high-

density electrocorticography (ECoG) grids, and b) what neural features are most 

informative for high decoding performance. Five subjects participated in a word reading 

experiment during which their brain activity was recorded with high-density ECoG. There 

were 12 unique words, and each word was spoken aloud 10 times. ECoG signals in alpha 

(8-12 Hz), beta (13-30 Hz) and high frequency band (HFB, 70-170 Hz) were 

downsampled to 75 Hz and arranged into word trials using windows from 250 milliseconds 

prior to word onset to the length of the longest pronounced word (about 1.1 second). We 

used a support vector machine classifier with leave-one-out cross validation to test five 

feature selection strategies: 1) all electrodes & alpha, beta, HFB; 2) a subgrid of 32 

electrodes & alpha, beta, HFB; 3) all electrodes & HFB; 4) a subgrid of 32 electrodes & 

HFB; 5) recursive feature elimination & alpha, beta, HFB. 

The best performing algorithm (5) led to the accuracy of 98%, 87%, 67%, 98% and 

59% for S1, S2, S3, S4 and S5, respectively (chance is 8%, Figure 1a). On average, this 

accuracy was at least 20% higher compared to the default strategy of no feature selection 

(1). HFB features were most informative for decoding. Electrodes that contributed to high 
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accuracy decoding the most were distributed along the ventral sensorimotor cortex 

(Figure 1b). 

This work has several limitations. First, the dataset size was relatively small. 

Second, the data were collected from able-bodied participants. Both are consequences 

of doing research on temporary ECoG recordings in human subjects. Despite these 

limitations, our results offer a methodology for obtaining high-accuracy word decoding 

from brain activity while optimizing selection of frequency and electrode features. 

Maximizing individual word decoding performance this way has the potential to further 

advance the development of speech BCIs. Future work will focus on optimal feature 

selection in the time dimension with the aim to identify a time window in neural data that 

leads to best decoding. We will also extend this methodology to tasks other than word 

reading and release the toolbox for optimal neural feature selection for BCI decoding to 

the neuroscience community.

Figure 1. Optimal feature selection results. (a) Word decoding accuracy for five feature 

selection strategies. Chance level accuracy is shown with a dashed blue line. Since leave-one-
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out cross-validation was used, no error bars are shown. (b) Optimal features identified with 

strategy (5) are shown on individual subject brain renderings. For reference, optimal features 

identified with strategy (2) are also shown suggesting that both a combinatorics approach 

looking for the best smaller subgrid and a recursive feature elimination approach may provide 

overlapping results. Colored electrodes represent electrodes chosen by recursive feature 

elimination as optimal (color denotes the frequency range in which the electrode was chosen). 

Small black electrodes outline the overall electrode grid coverage.

2.1.b. Presenter: Richard Csaky, PhD (University of Oxford, United Kingdom)

Title: Inner speech decoding from electroencephalography and 

magnetoencephalography 

Master: Christian Herff, PhD (Maastricht University, Netherlands)

Theme: Signal acquisition

Although inner speech is commonly experienced in daily life, there has been a 

scarcity of research focusing on imaged or covert speech, especially regarding non-

invasive techniques [5]. This study seeks to address this gap by using 

electroencephalography (EEG) and magnetoencephalography (MEG) to collect data 

during three different inner speech paradigms, along with conducting an initial decoding 

analysis. Such research has the potential to lay the groundwork for word-level 

communication via brain-computer interfaces [6].

We conducted a study to examine the differences between silent reading, 

repetitive inner speech, and generative inner speech using five patient-relevant words 

(help, hungry, tired, pain, thirsty) in three healthy participants. Before and after each 

session, 5 minutes of resting state EEG and MEG data were collected. For all sessions, 

we additionally collected electrocardiography (ECG), electrooculogram (EOG), 

electromyography (EMG; on the jaw), and eye-tracking data. We collected a large number 

of inner speech trials (~200/word) in each session.

Although several methods were tried, no significant decoding was obtained using 

the MEG inner speech data. On the silent reading trials, we trained a 2-layer linear neural 

network using the entire 1-second epoch with 20-fold cross-validation. For one of the 

participants with six sessions, 30% validation accuracy was obtained, whereas 44% was 
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achieved for the other participants (Figure 2 - example validation accuracy from one 

participant). Using a sliding-window linear discriminant analysis model, the peak accuracy 

was observed between 300 and 400 ms post-stimulus. In the EEG inner speech data, we 

found above-chance validation accuracy in only 3 sessions (out of 10), with an average 

of 25% in these 3 sessions. We tried various BCI decoding methods, e.g., wavelet 

features, Riemannian classification, and linear and nonlinear models, but nothing seemed 

to improve performance.

We explored the potential of decoding inner speech from a new MEG and EEG 

dataset through three paradigms across a few participants, but with a large number of 

trials. Our silent reading results demonstrate the feasibility of decoding visual 

representations of words from non-invasive recordings. The decoding appeared to be 

driven by early visual responses, with a later peak potentially reflecting higher-level 

language processing. This late component merits further investigation as a marker of 

semantic processing.

In contrast to silent reading, our extensive efforts to decode two types of inner 

speech were largely unsuccessful across EEG and MEG. While we explored various 

decoding algorithms and experimental designs, accuracy never substantially exceeded 

chance levels. This contrasts with more promising results from intracranial recordings in 

humans and suggests non-invasive signals may not adequately capture the subtle 

dynamics of inner speech. 

Several factors could underlie the difficulty of decoding inner speech non-

invasively. Inner speech lacks the external stimuli and muscle activations present during 

overt tasks, reducing the signal-to-noise ratio. There is also high inter-individual variability 

in inner speech strategies. Here we focused on collecting large trial counts from a few 

participants rather than a small sample across many subjects. Further limitations of our 

work include the small number of participants and the small set of words.

Future investigations could explore alternative paradigms more representative of 

natural speech, such as imagining longer phrases or reading whole sentences silently. 

Transfer learning and self-supervision may help extract robust inner speech 
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representations amidst noise. Intracranial findings point to superior temporal, inferior 

frontal, and motor areas as promising decoding targets. For non-invasive BCIs, 

approaches beyond word-level decoding may be needed for inner speech-based 

communication, such as decoding phonemes, or imagined handwriting. 

Figure 2. Validation accuracy distributions across the 5 folds of the 10 inner speech EEG 

sessions of one participant. Separate LDA models are trained and evaluated on each fold and 

session to decode which of the 5 words is being used in the 1-second inner speech trials. 

Chance level is 0.2.

2.1.c. Presenter: Maxime Verwoert (Maastricht University, Netherlands)

Title: Evaluating implant locations for a minimally invasive speech BCI

Master: Sergey Stavisky, PhD (University of California, Davis, USA)

Theme: Signal analysis

Speech BCIs present a promising avenue for restoring communication in 

individuals affected by a speech impairment, by converting neural signals into speech. 
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While conventional intracranial BCI technologies often necessitate craniotomies for 

implantation, stereo-electroencephalography (sEEG) offers a less invasive option, 

requiring only small burr holes [7]. This technology has the added benefit of sampling 

many cortical and subcortical regions at once. With the brain-wide coverage obtained 

through many recordings with epilepsy patients using sEEG electrodes, we sought to 

determine suitable electrode shaft locations for a speech BCI. 

We recorded overt speech production data with 24 participants. Their acoustic and 

neural data were time-aligned before applying an electrode-shaft re-reference. A unit 

selection approach was used to reconstruct the neural signal directly into audio using a 

10-fold cross-validation. Each individual shaft of each participant was analyzed separately 

to examine the spatial characteristics of decoding accuracy. We evaluated the audio 

reconstruction performance for each shaft by correlating the spectrogram of the original 

speech waveform to that of the reconstructed waveform. 

Only a small number of shafts had a significant speech reconstruction performance 

and were mostly located near the lateral and central sulci (Figure 3). The prefrontal and 

occipital cortices did not appear to be informative. There was no difference in 

performance between the two hemispheres. We identified five cortical regions, in addition 

to many contacts in white matter, that were most involved in the significant shafts: the 

auditory cortex, the superior temporal cortex, the pre- and postcentral cortices and the 

insula. The insula, auditory cortex, other sulcal regions and contacts within white matter 

are particularly interesting, as these are not usually sampled with electrodes on the 

cortical surface. Identifying these target locations for a less invasive speech BCI may help 

in developing an advantageous solution to restore communication for individuals with 

speech impairments.
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Figure 3. Electrode contacts belonging to significant shafts depicted in red, projected on an 

averaged brain. Highlighted in green are the most important regions (auditory cortex, superior 

temporal cortex, pre- and postcentral cortices, insula) in both hemispheres.

2.2 Motor imagery brain-computer interfaces

Motor imagery-based BCIs have been a common method throughout the history of BCI 

and are particularly popular for non-invasive approaches such as EEG [8]. Motor imagery 

has been convenient for a wide variety of patient populations and consumer applications 

alike, as it does not need external stimuli to perform and provides an intuitive mapping for 

control tasks. However, motor imagery often requires training for each user and can suffer 

from low accuracy when classifying multiple imagined movements. The recent work in 

this area pushes the boundaries of decoding by evaluating alternate features such as 

beta burst activity and novel motor network metrics to enhance classification. 

Researchers also attempt to reduce the data needed for motor imagery by applying 

domain adaptation, data augmentation techniques and transfer learning.

2.2.a. Presenter: Daniel Polyakov, PhD (Ben-Gurion University, Israel)

Title: Recruiting neural field theory for motor imagery data augmentation

Master: Christian Herff, PhD (Maastricht University, Netherlands)

Theme: BCI non-implanted - control
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This study presents a new approach to enhance BCIs that rely on motor imagery 

(MI). A common challenge faced by MI-based BCIs is the scarcity of diverse training data, 

hindering their accuracy and practicality. To address this, we introduce a novel Data 

Augmentation (DA) method leveraging Neural Field Theory (NFT), a computational model 

inspired by the human brain's neural dynamics (Figure 4) [9].

The core innovation lies in using NFT to generate artificial EEG time series that 

mimic the ones recorded during an MI task, in order to expand the training dataset. To 

evaluate this approach, we employed the widely used '2a' dataset from BCI Competition 

IV [10]. For each subject in the dataset, we fitted an NFT model to common spatial 

patterns of each MI class, jittered the fitted parameters to enhance diversity, and 

generated time series for DA.

Our method resulted in a significant accuracy improvement of over 2% when 

classifying the "total power" feature, but it did not enhance classification for the "Higuchi 

fractal dimension" (HFD) feature. We compared our approach with a DA method that adds 

Gaussian noise to feature values, but the noise-based method failed to achieve 

statistically significant accuracy improvements.

The lack of improvement in HFD-based classification suggests that the NFT model 

was more effective at representing certain features, particularly those in the time domain. 

This could be because the NFT fitting process discards phase information, potentially 

limiting its effectiveness for features like HFD. Another finding was that user proficiency 

in MI tasks influenced the efficacy of the DA, with more proficient users benefiting more 

from the augmentation.

This study provides insights into the underlying mechanisms of the augmentation 

process by examining how NFT parameters impact the extracted features. Future 

research could explore the efficiency of this DA method for additional MI classification 

features, such as kurtosis or sample entropy, with a focus on parameter jittering. 

Additionally, assessing this method’s compatibility with other BCI paradigms could offer 

further valuable applications.
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In conclusion, this research represents a significant advancement in the field of 

MI-based BCIs. By employing physiological models and innovative augmentation 

techniques, the study not only improves BCI performance but also offers valuable insights 

into the dynamics of neural field theory and its application in BCIs.

Figure 4. Evaluation workflow for MI data augmentation: A small dataset is created, and 

accuracy is tested using inverse cross-validation, with one-fold for training and the rest for 

testing. The motor imagery pipeline involves EEG preprocessing, common spatial pattern 

decomposition, feature extraction, and classification. NFT-based augmentation creates artificial 

CSP time series using a corticothalamic NFT model fitted to the original data. Reprinted from 

[11] with permission. EEG, electroencephalography; CSP, common spatial patterns; NFT, 

neural field theory; LDA, linear discriminant analysis

2.2.b. Presenter: Sotirios Papadopoulos (Université Claude Bernard Lyon 1, France)

Title: What is the exact relationship between beta band activity and hand motor imagery?

Master: Richard Andersen, PhD (California Institute of Technology, USA)

Theme: Signal analysis 

Since the characterization of the event-related desynchronization (ERD) and 

synchronization (ERS) phenomena in the mu and beta frequency bands [12], the BCI 

community has heavily relied on band-limited power changes as the classification 

features of interest. Recent investigations in neuroscience have challenged the notion 

that signal power is the best descriptor of movement-related brain activity modulations, 
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particularly in the beta frequency band (~13-30 Hz). Studies have demonstrated that on 

a single-trial level beta band activity occurs in short, transient events, termed “bursts”, 

rather than sustained oscillations [13]. This suggests that the ERD/S patterns only 

emerge when averaging across multiple trials, indicating that signal power may not fully 

capture all relevant brain activity modulations during motor-related tasks. 

Analyzing beta bursts holds promise for accessing markers that may be as 

sensitive as beta power for classification, and that potentially capture more subtle 

condition-specific changes. To investigate this possibility, we used six EEG datasets [14] 

and examined the activity of channels C3 and C4 while the participants were performing 

“left” and “right” hand motor imagery (MI). Using a new burst detection and waveform 

analysis algorithm (Figure 5) [15], we demonstrated that classification features which 

describe the modulation of burst rate for beta bursts with distinct waveforms can be more 

informative than beta power alone. Furthermore, these features were more reliable than 

conventional burst activity representations (e.g., rate, amplitude, temporal and frequency 

spans). These results illuminate the non-linear relationship between beta burst activity 

and band power, underscoring the potential benefit for the BCI field from incorporating 

such recent neurophysiological findings [16]. 

In order to compute these waveform-specific burst rates, in this study we employed 

a nested cross-validation classification procedure. The computational complexity of this 

algorithm was a major limitation that needed to be circumvented so that a burst-based 

analysis of the beta band activity could be suitable for BCI applications. To address this, 

we took advantage of aforementioned results and in a follow-up study we introduced a 

new framework for analyzing beta burst activity. Briefly, we defined a metric to identify 

burst waveforms, recorded in channels C3 or C4, whose rate is expected to be maximally 

modulated during a MI task. Then, we used these waveforms as data-driven kernels and 

convolved the EEG recordings with each kernel. This allowed us to efficiently filter the 

signals of all recording channels and gave us access to state-of-the-art classification 

algorithms. We showed that beta burst waveforms, when used as data-driven filters, can 

improve classification accuracy and information transfer rate [17], while also minimizing 

the classification score loss in across-session transfer learning paradigms [18].
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Figure 5. Flowchart of the waveform-resolved burst rate analysis: Each dataset was pre-

processed by rejecting trials and keeping channels C3 and C4. A burst detection algorithm was 

applied to these raw signals. The remaining trials were split into three sets using nested 5-fold 

cross-validation. The first set, used to sample bursts and create a principal component analysis 

model (green boxes/arrows), combined data from all subjects. The second set, for 

training/testing (purple boxes/arrows), selected the best waveform-resolved features via 

repeated cross-validation. The third set (orange boxes/arrows) validated the model and 

computed classification scores. Reprinted from [16] with permission. PCA, principal component 

analysis.

2.2.c. Presenter: Valeria Spagnolo (Instituto de Matemática Aplicada del Litoral, IMAL, 

CONICET-UNL, Santa Fe, Argentina)

Title: Towards co-adaptive BCI based on supervised domain adaptation: results in motor 

imagery simulated data 

Master: Ning Jiang, PhD (University of Waterloo, Canada)

Theme: BCI non-implanted - control

BCIs can be thought of as a two-learners system, in which the user learns how to 

control the computer and, simultaneously, the computer learns how to decode the user’s 

brain activity [19]. When used across several sessions, the machine learning system 

employed to decode brain activity should adapt to changes in the EEG signal and help 

the user in the development of stable brain patterns. In this line, a backward formulation 

of optimal transport for domain adaptation (BOTDA) was proposed to avoid recalibration 

in cross-session MI-BCIs and to improve decoding performance [20]. Although BOTDA 

showed promising results in a supervised sample-wise scenario, it is interesting to 

elucidate the extent to which the success of the adaptation depends on the subject's 

ability to perform the MI task or on the adaptive capabilities of the model. 

To investigate this, we simulated MI vs. rest EEG data to control MI alpha 

desynchronization (i.e. ERD) in the left hemisphere during MI. We conducted different 

cross-session scenarios, where a simulated session (S1) was used as a calibration 

dataset and a second session (S2) was utilized for testing. For each session, 100 trials 

of each class were generated. As a decoding algorithm, a common spatial pattern and a 
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linear discriminant analysis were used [21]. Firstly, the model was trained at the ideal 

session (S1) and the performance of BOTDA was tested in sessions with decreasing 

%ERD. BOTDA showed successful adaptation when the provided EEG patterns matched 

the mental task, regardless of the %ERD in S2. On the contrary, experiments 

manipulating the percentage of erroneous MI trials indicated that BOTDA could not 

conduct a successful adaptation when there was a mismatch in between the provided 

EEG pattern and the intended mental task. Finally, we trained the decoding model with 

data from sessions with different ERD values. The decoder yielded chance-level 

performance when calibration data lacked discernible ERD patterns, highlighting 

BOTDA's efficacy only with discriminative calibration data. Results on these simulations 

suggest that BOTDA can be a valuable tool for developing co-adaptive MI-BCI systems. 

2.2.d. Presenter: Juliana Gonzalez Astudillo, PhD (Paris Brain Institute, France)

Title: Network features for motor imagery-based brain-computer interfaces

Master: Richard Andersen, PhD (California Institute of Technology, Pasadena, USA)

Theme: Signal analysis

Exploring the complexities of the brain's motor cortex has been a central focus in 

neuroscience, particularly in advancing BCI technology. Traditionally, decoding MI has 

relied on understanding the spatial organization of the motor cortex [22], known for its 

principal involvement in controlling the contralateral side of the body. Moreover, recent 

advancements underscore that functional connectivity patterns not only unveil this 

lateralization during motor-related tasks but also offer a captivating window into modeling 

MI as a dynamic and intricate network, where brain regions or sensors serve as nodes 

and their statistical dependencies as links [23].

Here, we have investigated brain network topology and spatial organization's dual 

contribution to enhancing MI decoding through functional lateralization [24]. Introducing 

novel network metrics for integration (ω) and segregation (σ), we elucidate the 

contributions of within- and across-hemispheric connections in modeling MI states.

Using multiple open-access datasets of EEG signals from MI experiments focusing on 

left and right hand grasping motions [25], we construct spectral coherence-based 

Page 20 of 71AUTHOR SUBMITTED MANUSCRIPT - JNE-107691.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



networks and calculate lateralization metrics for each electrode. Our analysis identifies 

discriminant electrodes predominantly located in motor-related areas such as the primary 

motor cortex, premotor area, supplementary motor area, and primary somatosensory 

cortex, which are crucial for movement planning and execution. Notably, ω highlights 

motor cortex involvement, while σ extends to frontal areas implicated in attention and 

motor planning.

In BCI classification, these network properties yield competitive accuracy and 

provide neurophysiological insights, contrasting with conventional approaches like 

common spatial pattern filters and Riemannian methods, which lack neurophysiological 

interpretation. However, the developed metrics are primarily suited for lateralized tasks, 

for instance bilateral motor cortex recruitment may result in similar features for both 

hands, limiting their discriminative power. Looking ahead, the precise detection of 

involved areas opens up the possibility of analyzing the temporal dynamics of these 

metrics to identify different stages of motor action. Combined with dynamic classification 

techniques, this could provide a more accurate and reliable solution for BCI. 

2.2.e. Presenters: Satyam Kumar & Hussein Alawieh (The University of Texas at Austin, 

USA)

Title: Transfer Learning Promotes Acquisition of Individual BCI Skills

Master: Fabien Lotte, PhD (Inria Center at the University of Bordeaux, France)

Theme: BCI non-implanted - control

Motor imagery (MI) is one of the most commonly used modalities for controlling 

BCIs [26–28] due to its volitional nature, requiring no external stimuli. However, MI-based 

BCIs often necessitate tedious calibration sessions to record EEG data for building real-

time machine learning decoders, which may suboptimally perform due to inherent EEG 

signal non-stationarity. Recent studies underlie the importance of longitudinal training with 

closed-loop feedback for robust MI-BCI control [29,30]. In this study [31] we show that a 

decoder trained on data from a single expert can provide consistent closed-loop feedback 

to naive subjects thus promoting MI skill acquisition. We propose two subject-independent 

real-time frameworks: a) Generic Recentering (GR) employing unsupervised domain 
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adaptation, and b) Personally Assisted Recentering (PAR), an extension of GR that 

updates decoder parameters in real-time using a small amount of the naive subject data. 

These frameworks are founded on Riemannian Geometry Classifiers, leveraging affine 

invariant transforms to match covariate shifts on the Riemannian manifold [32,33], 

thereby reducing non-stationarities in real-time and providing contingent closed-loop 

feedback. 

We tested our proposed framework on 18 BCI-naive volunteers, dividing them into 

PAR and GR groups. Over five consecutive online training sessions, participants 

controlled a standard binary class MI task with bar feedback [34] followed by a car racing 

task [35]. Experimental results show that participants in both groups exhibited increases 

in command delivery performance in the bar task (GR: p<0.05 and PAR: p<0.01). 

Moreover, subjects show a significantly increasing trend in command delivery 

performance over online sessions in both the frameworks. Race completion time values 

in the car racing task indicated that participants could finish the races significantly faster 

following the training sessions compared to their initial performance for both GR (p<0.01) 

and PAR (p<0.05). Furthermore, feature separability analysis [36] showed significant 

increasingly discriminant features for both frameworks and tasks. For both frameworks, 

the most contributing EEG channels for discriminating between the two MI classes were 

predominantly over the motor cortex. Despite using feedback from subject-independent 

decoders, participants developed their own enhanced individual MI features, distinct from 

the expert’s data used for decoding. Finally, we demonstrate that unsupervised 

adaptation (GR) coupled with longitudinal training reached statistically similar 

performance to supervised recalibration (PAR) in a realistic setting.

 Our proposed transfer learning frameworks promoted MI skill acquisition, 

removing the need for calibration sessions. Participants demonstrated improved BCI 

control and increased feature discriminability over multiple training days, crucial for 

mutual learning settings. Importantly, our frameworks enabled participants to modulate 

their task-specific individualized feature spaces for BCI control, diverging from the 

expert's patterns.
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A limitation of the current work is that users operated the BCIs in binary class 

settings. Future work should aim towards validating the proposed frameworks in 

multiclass BCI settings to enhance the degree of freedom for controlling external devices 

and applications. Moreover, the current study used data from a single expert subject for 

online feedback. In the future, data from multiple experts could be pooled together to train 

data-driven deep learning models like EEGNet [37] and TSMnet [38] for improving online 

BCI feedback. Finally, these expert-based decoding frameworks could be used to provide 

online feedback to stroke patients for longitudinal MI-BCI training who may struggle to 

generate distinctive calibration data due to their reduced ability to modulate sensorimotor 

rhythm [39].

2.3 Brain-computer interfaces for pediatric populations

BCIs hold promise for enhancing the interaction and communication abilities of individuals 

with motor impairments. However, there has been limited exploration of BCI research 

involving pediatric and young adult populations [40]. Existing studies in these 

demographics have yielded conflicting results, underscoring the need for the BCI 

community to focus on enhancing the design, implementation, and user experience 

specifically tailored for pediatric and young adult populations. This emphasis is especially 

crucial for individuals with neurodevelopmental disorders, neurodegenerative disorders, 

or severe motor disabilities.

2.3.a. Presenter: Dion Kelly, PhD (University of Calgary, Canada)

Title: The effect of gamified calibration environments on P300 and MI BCI performance 

in children

Master: Camille Jeunet, PhD (Aquitaine Institute for Cognitive and Integrative 

Neuroscience, Bordeaux, France)

Theme: User aspects: experience, ethics, target population

This study explored the potential of gamification to improve BCI calibration in 

children, aiming to address longstanding calibration challenges such as monotony and 

lack of engagement, which are exacerbated by children’s limited attention and motivation 
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[41]. Incorporating scoring and rewards into calibration tasks, this randomized, cross-over 

study compared gamified and non-gamified environments to assess their impact on 

classification accuracy and task performance. 

Thirty-two typically developing children (mean age 11.9 years) participated in two 

sessions, performing utility-driven tasks following gamified and non-gamified calibration. 

The tasks included spelling via visual P300 event-related potentials (Figure 6) and 

controlling a cursor via sensorimotor rhythm (SMR) modulation (Figure 7). Gamification 

elements like stories, quests, points, and sounds were integrated into the gamified 

calibration environments to enrich engagement. We evaluated BCI performance, 

including classification accuracy and online accuracy, as well as motivation, tolerability, 

and mental workload. For the P300 paradigm, classification accuracy was high in both 

gamified and non-gamified conditions, exceeding 96%. However, online performance 

during the spelling task was significantly lower following gamified calibration (71.47%) 

compared to non-gamified calibration (80.47%, p < 0.01). In the SMR paradigm, 

classification accuracy was 61.81% in the gamified condition versus 59.84% in the non-

gamified condition, with no significant differences between conditions for classification or 

online cursor control performance. Furthermore, gamification did not significantly impact 

participants' motivation, tolerability, or workload perceptions.

This study highlights the capability of children to effectively use advanced BCI 

systems, achieving performance comparable to adults. However, the results suggest that 

the gamified elements employed may not have been sufficiently engaging. Several 

limitations should be noted, including the potential introduction of an auditory P300 

component due to auditory stimuli in the gamified calibration task, which was absent in 

the utility-driven tasks and may have affected classification performance. Additionally, a 

ceiling effect in the P300 paradigm, where performance was already high in the non-

gamified condition, may have limited the ability to observe the true impact of gamification 

on BCI performance.

Future investigations should focus on optimizing gamified calibration environments 

tailored to individual preferences and abilities. There is also a need to explore alternative 

gamification designs, potentially incorporating user feedback to enhance engagement 
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and motivation, especially for younger children or those with disabilities. Further research 

is also necessary to examine the long-term effects of repeated practice on BCI 

performance and to investigate how these results translate to clinical populations with 

motor impairments or communication challenges.

 

Figure 6. P300 scenes: standard calibration scene (left), gamified calibration scene (Mole 

Patrol game, middle), two-stage T9 speller scene for spelling task (right).

 

Figure 7. SMR scenes: standard calibration scene (left), gamified calibration scene (Banana 

Dash game, middle), cursor control scene for yes/no response task (right). Calibration consisted 

of 20 segments of six 1.5s-epochs for a total time of 5.67 minutes.

2.3.b. Presenter: Joanna R.G. Keough, MSc (University of Calgary, Canada)

Title: Mechanisms and Impacts of Brain-Computer Interface Fatigue in Children

Master: Camille Jeunet, PhD (Aquitaine Institute for Cognitive and Integrative 

Neuroscience, France)
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Theme: User aspects: experience, ethics, target population

BCIs can assist children with disabilities in communication, environmental 

exploration, and gameplay [42]. BCI research is rapidly developing but has neglected 

pediatric populations. Like many cognitively demanding tasks, fatigue is a critical factor 

to consider for BCI performance and enjoyment [40] and has often been reported by 

patients and families within our pediatric clinical BCI program. BCI fatigue has been 

studied in adult populations, but there are no pediatric studies to date. This prospective, 

cross over study assessed the effects of two BCI paradigms and a control condition on 

self-reported fatigue and EEG biomarker of fatigue – alpha band power. 

Thirty-two typically developing children aged 7-16 years participated in three 

sessions: motor imagery-BCI, P300-BCI, and film viewing (control) (Figure 8). The DSI-

24C headset was utilized for BCI operation and EEG collection. Self-reported fatigue and 

resting-state EEG alpha band power significantly increased across all sessions (p<0.001; 

p=0.047 respectively). The increase in self-reported fatigue observed was greater in the 

younger half of participants. These two measures of fatigue were uncorrelated to one 

another. No differences in fatigue development between sessions were observed. This 

project provides a baseline understanding of pediatric BCI fatigue. Short periods (30-

minutes) of BCI use can increase self-reported fatigue and an EEG biomarker of fatigue. 

Performance was stable across BCI sessions and not associated with our measures of 

fatigue. 

The clinical implications and impact of fatigue on useability and enjoyment are 

unclear and point to limitations of this study. These include a modest sample size and 

large age range complicating age-based analysis. An additional unexpected challenge 

was the tolerability of the DSI headset. Many participants found it uncomfortable and 25% 

of participants requested to stop at least one of the three sessions early due to discomfort. 

Despite these limitations, our results support the variability of fatigue and the overall BCI 

experience in children that warrant future investigation to inform the design of pediatric 

BCI systems to meet the unique goals of children and families. These investigations 

should include longer BCI sessions with a more tolerable headset. Not all children had 
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adequate control of the BCI, and future work should uncover predictors of performance 

particularly in children. Strategies should be identified to promote BCI learning. 

Figure 8. Protocol Schematic for All Three Sessions. Session tasks were balanced using a 

Latin square design. Sessions lasted 60 to 90 min. MI, motor imagery; RS, resting state. 

Adapted with permission from figures originally published in [43].

2.3.c. Presenter: Araz Minhas (University of Calgary, Canada)

Title: Does my Child Know I’m Here? EEG Signatures of Parental Comfort for Disorders 

of Consciousness in a Critically Ill Child

Master: David E. Thompson, PhD (Kansas State University, USA)

Theme: BCI non-implanted - other

Each day in the Pediatric Intensive Care Unit (PICU), there are unconscious and 

comatose children afflicted with severe brain diseases, whose parents lie beside them, 

desperately wondering if their child will ever awaken. Up to 20% of adult patients with 

such disorders of consciousness (DoC) exhibit signs of cognitive-motor dissociation 
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(CMD) [44], wherein patients’ willful modulation of brain activity may be observed via EEG 

when given motor commands— indicating some intact cognition, despite behavioral 

unresponsiveness. CMD is a promising early positive prognostic marker and may enable 

some simple communication (“Yes”/ “No”) via BCIs for such patients. Unfortunately, 

children have been largely neglected in CMD and BCI research [45]. However, much 

potential for revealing CMD may lie in their developing brain networks’ heightened 

receptivity to social stimuli like parental comfort and affection. Detecting such networks’ 

activation in comatose children whose parents are constantly caring for them in the PICU 

could reveal new brain activity markers that may help predict outcomes early and allow 

families to communicate with their children in critical circumstances. 

To explore this possibility, a 13-year-old female post-anoxic coma patient’s 20-

channel EEG was analyzed with synchronized 17-hour PICU video footage. Highcuhi 

Fractal Dimension values (HFD; indexing EEG complexity) were compared across video-

derived timestamps of parental comfort (physical contact / talking to children), presence 

(in room), and absence. Shifts in child EEG complexity (mean HFD) positively correlated 

with parental comfort (r ≈ 0.26). HFD values formed two clusters (K-means; 

Silhouette=0.54)— a higher HFD cluster (1.40±0.11) coinciding mainly with parental 

presence (74% of clustered time points), and one with lower HFD (1.24±0.05) primarily 

during parental absence (61%, p<0.01). These preliminary results, summarized in Figure 

9, suggest that parental comfort may elicit discernible EEG changes in pediatric DoC – 

encouraging future investigations of such indicators for assisting prognosis or 

communicative BCIs. As the generalizability of these results is limited by the single-

patient case design, future research involving larger cohorts will also be needed to 

validate these findings, and more extensively explore the integration of such complexity 

measures into prognostic models and potential BCI tools for pediatric coma.
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Figure 9. (a) K-means clustering of Higuchi Fractal Dimension (HFD) values from continuously 

recorded EEG (cEEG) data of a pediatric post-anoxic coma patient, revealing two distinct 

clusters. (b/d) Mean HFD values across channels over time, indicating fluctuations in EEG 

complexity. Temporal alignment of parental state with cEEG suggests a correlation between 

parental comfort and increased EEG complexity. (c)  Distribution of EEG samples per cluster 

found higher HFD values associated with parental presence/comfort, and lower HFD during 

parental absence. Reprinted from [46] with permission.

2.4 Platforms for closed-loop brain-computer interface research 

Closed-loop BCI applications encompass a diverse array of functionalities, extending 

from delivering precisely timed brain stimulation [47,48] to offering instantaneous 

feedback to users and facilitating the control of various end effectors [49]. This 

multifaceted scope enables closed-loop BCIs to cater to a wide spectrum of needs and 

scenarios, including therapeutic interventions, neurorehabilitation programs, and 

assistive technologies aimed at enhancing users' autonomy and quality of life. Developing 

platforms that can easily perform or integrate closed-loop applications may enable the 

generalizability and translation of these applications. 
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2.4.a. Presenter: Matthias Dold (Radboud University, Netherlands)

Title: Platform for closed-loop deep brain stimulation research: DAREPLANE

Masters: Aysegul Gunduz, PhD (University of Florida, USA) & Andreea Ioana Sburlea, 

PhD (University of Groningen, Netherlands)

Theme: BCI implant - control

BCIs continuously decode the brain state, a highly relevant building block for 

adaptive neurostimulation. The DAta driven REsearch PLatform for NEurotechnology 

(DAREPLANE) [50] project creates a modular open source platform to enable BCI 

methods for adaptive closed-loop deep brain stimulation (aDBS). Current research on 

aDBS is either conducted with custom soft- and hardware setups [51–53], or is fully 

embedded in a single vendor's systems [54–56]. DAREPLANE supports customized 

setups by providing a platform of open-source single responsibility modules for tasks 

involved in closed-loop setups. Examples of such tasks related to aDBS are controlling 

the stimulation parameters, decoding multi-modal recordings, exploring control 

strategies, rendering of different user tasks, a thorough logging, and real time data 

monitoring. An abstract high-level overview of such a setup with DAREPLANE is shown 

in Figure 10. 

Figure 10.  Schematic of a closed-loop DBS experiment and involved DAREPLANE modules. 

The jigsaw puzzle pieces represent different modules that can be combined to an aDBS setup. 

Different modules for the same type of task can be switched in place. Adapted with permission 

from [50]. EEG, electroencephalography; LFP, local field potential; ECoG, electrocorticography; 

I/O, input/output; API, application programming interface; PID, proportional - integral - derivative  
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The platform is built with the experience of our previous work on decoding of neural 

markers for deep brain stimulation (DBS) [53]. It relies on socket communication and uses 

the lab streaming layer [57] protocol for data streaming. This choice makes it mostly 

technology agnostic, with the exception of the central orchestration which is implemented 

in Python. The modules can still be used standalone, relaxing the requirements to the 

programming language the modules are implemented in. 

An early stage version of the platform has already been used during a single aDBS 

session and various open-loop DBS [50] in patients with Parkinson’s disease (PD) while 

they are performing a motor task [58]. Although targeted for aDBS experiments, 

DAREPLANE can also be used to implement classical BCI applications like spellers or 

motor-imagery controls. Due to the use of network communication, the bandwidth of the 

involved network hardware can limit the throughput of the platform. This can be relevant 

for high channel counts, with high sampling rates and depends on how much data is 

shared between modules. Further work will investigate and quantify these limits in more 

detail.

2.5 Deep learning in brain-computer interfaces

As the availability of large-scale datasets continues to grow, leveraging deep learning 

techniques for feature extraction and decoding brain states within BCI systems holds the 

potential to significantly enhance performance [59]. This advancement could lead to more 

accurate and reliable outcomes, ultimately empowering BCI technology to better serve 

individuals with diverse neurological conditions and needs. 

2.5.a. Presenter: Yiyuan Han, PhD (University of Essex, United Kingdom)

Title: Offline Prediction of Prolonged Acute Pain by means of Convolutional Neural 

Network Model applied to Electroencephalographic Oscillatory Connectivity

Master: Christian Herff, PhD (Maastricht University, Netherlands)

Theme: Signal analysis
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Unresponsive patients, e.g., ones with disorder of consciousness, face challenges 

in communicating their pain, making pain assessment difficult for caretakers. EEG signals 

offer a potential avenue for pain assessment at the bedside. However, due to individual 

variation, building accurate pain assessment models necessitates labeled data, which 

cannot be obtained from unresponsive patients. To address this gap, we aimed to develop 

a model capable of generalizing to new individuals without labeled data. For this purpose, 

we trained a convolutional neural network (CNN) to classify pain and non-pain conditions 

from EEG signals across individuals.

Forty-three healthy individuals participated in the experiment, with data from thirty-

six participants included for analysis after exclusions. We focused on two conditions: pain 

induced by hot water (H) and resting states with eyes open (O) or closed (C). EEG signals 

were segmented into 5-second trials with a 50% overlap. Inter-site phase clustering 

(ISPC) was computed to measure functional connectivity between 32 EEG channels [60]. 

The ISPCs were reorganized into a 32x32 matrix as input features for the CNN model. 

Leave-one-out tests were conducted for each participant, with one participant excluded 

from model training. Cumulative evidence (CE) was computed to evaluate the effect of 

the number of consecutive trials. In the binary classifications between pain condition (H) 

and resting states (O or C), the accuracy of CE was significantly higher than the tests 

without cumulative evidence within one minute (Figure 11a). For H vs O, the maximum 

CE accuracy was 69.26%±14.72%, while the original accuracy was 63.99%±13.11%. For 

H vs C, the maximum CE accuracy was 81.93%±14.73% and the original accuracy was 

76.80%±15.28%.

For interpreting the model’s generalization, we used Gradient-weighted Class 

Activation Mapping (Grad-CAM) to generate the activation patterns of the functional 

connectivity in binary classification (Figure 11b). Comparing the patterns for the binary 

classification between H and O/C conditions, the functional connectivity between frontal 

and central regions was specific to pain. The neurophysiology of somatic pain involves 

the integration between frontal and central lobes, which might be the origin of such 

specificity [61]. 

Individual variation in neural responses to pain poses challenges for pain 

assessment model generalization. Transfer learning models are rare due to this variability 
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[62]. Recent research suggests that slow alpha frequency and alpha band functional 

connectivity correlate with individual pain sensitivity, offering potential neural markers for 

pain prediction [60,63]. Our study demonstrates the potential of alpha band functional 

connectivity to mitigate individual differences in pain prediction, indicating a promising 

avenue for future research in pain assessment using EEG signals. The analysis of 

activation patterns suggested the interpretation of the obstacle in generalization, 

Salomons revealed that prefrontal cortex activation is associated with individual 

differences of pain perception [64]. Hence, the overlap of the frontal region in both pain-

related and individual-related specificity could harden the generalization.

This research did not effectively involve processing individual differences of neural 

responses to pain, for example, transfer learning frameworks taking the individual-specific 

feature into account. In the following study, we will develop transfer learning models to 

improve the generalisability of the pain prediction model. Another limitation is that this 

study did not consider the influences of thermoception, for which the innocuous thermal 

stimulation can help declare its effects in the future.
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Figure 11. (a) The effect of time length to classification accuracy. The ‘original’ model 

represents the general evaluation without cumulative evidence, ‘mean score’ was based on the 

mean prediction score to predict the labels, and ‘voting’ mode predicted the labels according to 

the most frequency prediction in the cumulation range. Adapted from [65] with permission. (b) 

Activation patterns of functional connectivity out of Grad-CAM. The highlighted regions 

represent the connectivity with higher weights in the classification. Adapted from [60] with 

permission.

2.5.b. Presenter: Alexander McClanahan, MD (University of Arkansas for Medical 

Sciences, USA)

Title: Decoding Visual Scenes from Visual Cortex Spikes Using Deep Learning
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Master: Xing Chen, PhD (University of Pittsburgh, USA)

Theme: Signal analysis

Recent advancements in machine learning have revolutionized neural decoding, 

showcasing remarkable achievements such as decoding rodent spatial coordinates via 

hippocampal place cells, and motor activity [66,67]. We investigated the potential of deep 

learning in decoding visual image stimuli from neural spikes across various time bins and 

brain regions of the rodent brain. 

Electrophysiology recordings and stimulus presentations were obtained from the 

Allen Institute for Brain Sciences Visual Coding Neuropixels Dataset using the AllenSDK. 

Three deep learning models were trained on spike counts across thousands of cortical 

and subcortical neurons and over 5,000 natural scene stimulus presentations. Models 

were tested on held-out test spikes and evaluated for image decoding accuracy. 

Three machine learning models were trained to decode and classify which image 

was shown to the animal solely from visual neural spiking activity, with results 

summarized in FIgure 12. Each model’s decoding accuracies were subsequently 

compared across various time bin durations and anatomical regions of the mouse visual 

system. In our analysis, time bin durations of 50 ms and greater appeared to capture 

neural information in the most robust way for decoding. Deep neural networks 

outperformed shallow neural networks and linear support vector machines across nearly 

all conditions (aside from small time bin durations, which was felt to be secondary to 

overfitting) and within individual brain regions. VISp (primary visual cortex) outperformed 

all other discrete brain regions in decoding accuracy, with VISal (anterolateral visual 

cortex) and LGN (thalamic) closely behind, and CA1 and CA3 (hippocampal regions) 

performing at chance, effectively serving as controls (Figure 12c). These findings suggest 

possible avenues for future visual neural decoding efforts and offer insights into optimal 

neural decoding algorithm design. 
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Figure 12. Neural Decoding Analysis. (a-b) Results of time binning analysis. Mean decoding 

accuracies of each time bin condition and machine learning model plotted and reported in the 

underlying table. (c) Individual brain region decoding analysis. Mean decoding accuracies 

across all sessions reported for each brain region and machine learning model, superimposed 
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on top of a table of values. (d) Grouped brain region decoding analysis. Graphical comparison 

between mean decoding accuracies of various grouped brain regions for each machine learning 

model, along with mean values. (e) Anatomical heatmap of decoding accuracies of six visual 

cortex subregions decoded from, overlayed on mouse brain. 

Several limitations exist, however. Data were obtained from an open dataset 

provided by the Allen Institute, which may aid in reproducibility but inherently limited our 

ability to acquire raw spiking data. Our deep learning and data analysis therefore relied 

on data obtained by another institution. The interpretability of this work may be partially 

limited given the unpredictable nature of the representations learned by deep neural 

networks as evidenced by signs of overfitting described above. While our decoding 

networks were validated, trained, and tested within each individual subject, it remains 

unclear how well the models would generalize across subjects. 

While conventional neural decoding algorithms make assumptions about the 

encoding of neural representations, deep learning-based neural decoding makes few 

assumptions. However, most deep learning-based neural decoding work has been done 

in motor cortex decoding. Accurate decoding of electrophysiology signals from brain 

structures involved in visual processing hold great promise in better informing our 

understanding of sensory processing, artificial intelligence, and BCIs for visual 

prosthetics. Taking a page from the motor decoding literature, future directions of this 

work involve implementing a neural population dynamics approach given the richness of 

spiking data in this open dataset. For example, characterizing the distinct neural 

trajectories that visual scene stimuli produce, as has been described with movement 

patterns in the motor cortex. Lastly, while our initial focus was decoding static visual 

stimuli, reconstruction of both static and dynamic (movies) visual stimuli from action 

potential spikes would represent a significant breakthrough, as has been explored in 

recent years largely with fMRI. 

2.5.c. Presenter: Mousa Mustafa (Technische Universität Berlin, Germany)

Title: Decoding Invasive Brain Signals Using Deep Learning

Master: Marianna Semprini, PhD (Italian Institute of Technology, Genoa, Italy)
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Theme: Brain implant - other

This research explores the use of deep learning and classical machine learning 

models to predict self-paced hand movements in patients with PD using ECoG 

recordings. Deep learning has advanced the decoding of ECoG data [68], providing 

insights into precise hand movements. Adaptive bidirectional neuromodulation, which 

combines neurostimulation with real-time brain activity feedback, offers the potential for 

more accurate symptom management for patients with PD [69]. Merk et al. [70] conducted 

a comprehensive review on the current state of machine learning use for DBS, and these 

developments underscore the promise of deep learning in neurology, including 

applications in brain-computer interfaces and neuroprosthetics. The study’s objective is 

to compare the accuracy and precision of predictions made by these models and evaluate 

their potential for use in closed-loop deep brain stimulation treatment for PD.

A variety of classical machine learning models (Logistic Regression, XGBoost 

Classifiers, support vector machine, K-neighbor classifier, Random Forests, and Gradient 

Boosting) and deep learning model architectures (CNN, ResNet, HTNet, and multilayer 

perceptron) were used in this study. The models were trained on data recorded from 

intracranial electrodes placed at the sensorimotor and parietal cortex of patients. 

Preprocessing and frequency band variance features were extracted for the classical 

machine learning models using the py_neuromodulation toolbox, while continuous 

normalized ECoG data were used to train the deep learning architectures. After training 

the models, validating them via 3-fold cross-validation, and evaluating them on the 

balanced accuracy metric, it was observed that the best deep learning model 

outperformed the classical machine learning models on most subjects in balanced 

accuracy and in all subjects on the F1 score. A visualization of the processing pipeline 

may be found in Figure 13a. 

The results of this study demonstrate the potential of deep learning models in 

accurately predicting self-paced hand movements using ECoG recordings from patients 

with PD. The deep learning models outperformed the traditional machine learning models 

in accuracy and precision. Specifically, the deep learning models achieved a balanced 

accuracy with a mean of 0.8808 and a standard deviation of 0.0532, and an F1 score with 
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a mean of 0.7378 and a standard deviation of 0.0799. In comparison, the classical 

machine learning models had a balanced accuracy with a mean of 0.7875 and a standard 

deviation of 0.1071, and an F1 score with a mean of 0.5330 and a standard deviation of 

0.1948 (Figure 13b). These findings suggest that deep learning models have the potential 

to be a valuable tool in the treatment of Parkinson’s disease.

Figure 13. (a) Overview of the pipeline used for each model group. (b) comparison of the 

results on both the balanced accuracy score and F1 metrics between the classical machine 

learning (CML) group and deep learning (DL) group.

The study’s limitations include a small sample size, data variability among patients 

and lack of model interpretability. Future research should focus on larger and more 

diverse cohorts, longitudinal studies, improving model interpretability, and exploring the 

effect of data size on training the deep learning models. Additionally, exploring real-world 

implementation in clinical settings is crucial. Addressing these aspects will help fully 

realize the potential of deep learning models in treating Parkinson’s disease.

2.6 Exploring brain-computer interfaces for neurorehabilitation

For neurorehabilitation, BCIs serve as invaluable tools by translating neural signals into 

tangible feedback, thereby aiding patients in various situations, such as post-stroke 

rehabilitation or mental health improvement. By continually refining the design, enhancing 

feedback mechanisms, and broadening the clinical applications of BCIs in 
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neurorehabilitation settings, we can effectively customize these systems to meet the 

unique needs and preferences of each user.

2.6.a. Presenter: Jose Gonzalez-Espana (University of Houston, USA)

Title: NeuroExo: A Low cost Non Invasive Brain Computer Interface for upper-limb 

stroke neurorehabilitation at home

Master: Ning Jiang, PhD (University of Waterloo, Canada)

Theme: Brain non-implanted - control

EEG-based BCIs for real-time control of end effectors in at-home 

neurorehabilitation demand robust software and hardware solutions. However, the high 

cost of quality EEG amplifiers hinders their commercial viability. In the NeuroExo BCI 

System, it addressed these challenges by developing a low-cost BCI system with a focus 

on democratized access. Specifically designed for upper-limb stroke rehabilitation, the 

NeuroExo BCI System serves as a groundbreaking proof of concept.

The system comprises key components, including a versatile EEG headset with 

five dry-comb electrodes for a form-fitting, universally adaptable solution. Using cost-

effective devices such as the BeagleBone Black Wireless, ADS1299, and ICM-20948 for 

processing and data collection, we ensured affordability. LabVIEW facilitated seamless 

integration as the primary coding language. The NeuroExo BCI system has real-time 

capabilities in both open and closed-loops modes. In open loop mode, raw EEG and 

inertial measurement unit data were collected at an 80 Hz rate, while in the closed loop 

mode, a WiFi-enabled robotic arm served as the end effector for upper-limb rehabilitation 

at a 40 Hz rate.

To validate the system's clinical utility for at-home neurorehabilitation, stroke 

survivors enrolled at TIRR Memorial Hermann participated in a comprehensive program. 

This included one week of clinic training followed by six weeks of home therapy with the 

NeuroExo BCI system, with progress assessed by a physical therapist before and after 

sessions. The goal of the NeuroExo system is to enhance the feasibility of at-home 

neurorehabilitation for chronic stroke patients, offering a low-cost, portable, reliable, and 

user-friendly solution.
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In future work, the results of at-home use by stroke survivors and healthy 

participants will be presented. A user-centered analysis of the system will also be 

included. Improvements in the hardware, firmware, and both the back-end and front-end 

software are expected to be implemented based on the user-centered experience.

2.6.b. Presenter: Florencia Garro, PhD (Italian Institute of Technology, Genoa, Italy)

Title: Effects of Robotic Assistance in ERP Modulation for Upper-limb Exoskeleton 

Control

Master: Ning Jiang, PhD (University of Waterloo, Canada)

Theme: Brain non-implanted - control

Event-related potential (ERP)-based BCIs are investigated in robotic 

neurorehabilitation to potentially boost brain plasticity and motor learning by engaging 

patients in the control loop [71]. Exoskeletons offer assistance levels (ALs) that could be 

fine-tuned using ERP-based BCI [72]. However, it remains unclear if and how brain 

activity is affected by varying ALs. We analyze ERP modulation during a standardized 

task with different ALs provided by FLOAT, a novel upper limb exoskeleton [73], to explore 

the relationship between brain activity and ALs.

We collected high-density EEG from 10 healthy right-handed individuals while 

performing a standardized reaching task under three distinct conditions: unassisted free 

movement (No_Exo) and two levels of FLOAT-assisted movements: low and high AL 

(Exo_AL1 and Exo_AL2).  Between 100-350 ms after the Go cue, a cluster-based 

permutation test using the Monte Carlo method shows differences in both Exo_AL1 and 

Exo_AL2 vs No_Exo conditions (p<0.05). The difference is most pronounced over 

central, centroparietal, and left parietal-occipital sensors, including the frontocentral area 

for Exo_AL2 (Figure 14a). Between -250-250 ms centered on target reach, we found 

differences between the Exo_AL2 and No_Exo condition, most pronounced over central 

and left parietal-occipital sensors (Fig. 14b). The lack of difference between Exo_AL1 and 

No_Exo suggests that the motor scheme is unchanged, and thus, the two conditions are 

perceived similarly in that movement phase. 
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Comprehending the impact of ALs on brain activity may boost BCI design, aiding 

in the enhancement of human-in-the-loop optimization strategies for neurorehabilitation. 

Specifically, future research aims to support the development of novel metrics based on 

standardized neuromechanical data for assessing the performance of both robotics and 

patients. Limitations of this study include the self-paced nature of the task, which may 

introduce asynchrony in ERPs, and the small sample size. Future work will address these 

limitations by expanding the sample size to enable more robust statistical analyses, and 

by exploring additional analyses, such as frequency domain approaches.

Page 42 of 71AUTHOR SUBMITTED MANUSCRIPT - JNE-107691.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 14. ERP amplitudes for No_Exo (gray), Exo_AL1 (green), and Exo_AL2 (red) across 

various time intervals centered on the Go cue (a) and target reach (b) conditions. Adapted from 

[74] with permission. 

2.6.c. Presenter: Angela Vujic, PhD (Massachusetts Institute of Technology, Boston, 

USA)

Title: Joie: An Affective Brain-computer Interface for Learning Mental Strategies for 

Positive Affect

Master: David E. Thompson, PhD (Kansas State University, USA)

Theme: BCI non-implanted - other

Training to enhance left prefrontal brain activity via neurofeedback may alleviate 

symptoms of anxiety and depression [75,76]. To impart users with positive mental 

strategies, we developed Joie, a joy-based EEG BCI [77,78]. Joie utilizes prefrontal alpha 

asymmetries linked to joyful thoughts as input to control a character’s movement in a 

neurofeedback video game (Figure 15). The video game is designed as an endless 

runner where users are rewarded and receive a score based on how long they sustained 

left prefrontal asymmetry. Joyful thoughts during gameplay induce left prefrontal 

asymmetry, resulting in positive feedback in-game, whereas right prefrontal asymmetry 

results in negative feedback. In a lab study involving 20 participants undergoing 15 

training sessions each over two weeks, our experimental group, instructed to imagine 

positive music, winning awards, and other strategies associated with approach and 

withdrawal motivation behavior, exhibited a significantly improved ability to activate alpha 

asymmetry compared to placebo and control groups. Joie highlights the potential of 

prefrontal asymmetries, or applying the approach and withdrawal motivation model, as 

input for affective BCIs. Training these asymmetries via neurofeedback can impart mental 

strategies with potential applications in mental health for reducing anxious or depressive 

symptoms.
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Figure 15.  Joie’s neurofeedback design with a wearable, dry electrode headband. The 

user imagines joyous thoughts activate prefrontal left asymmetries that cause their character to 

collect coins as a reward. Reprinted from [75] with permission. 

2.7 Advancements in sampling the sensorimotor cortex 

Recordings obtained from the sensorimotor cortex have played a pivotal role in advancing 

BCIs and their practical applications. Recent innovations in neural interface technology, 

such as endovascular electrode arrays, advancements in sampling techniques, such as 

ultra-high-density ECoG recordings, offer new avenues for capturing neural signals and 

extracting information. Despite these technological strides, there remains a crucial need 

to thoroughly characterize the information encoded within these novel signals and 

datasets to understand their applicability. 

2.7.a. Presenter: Kriti Kacker (Carnegie Mellon University, USA)

Title: Spectral features of endovascular ECoG signals recorded from a Stentrode in 

human motor cortex

Master: Richard Andersen, PhD (California Institute of Technology, USA)

Theme: Brain implant - control

The StentrodeTM is a novel endovascular BCI technology implanted within the 

superior sagittal sinus to measure field potentials, similar to ECoG, from the primary motor 

cortex, enabling communication for individuals with severe paralysis [79]. However, the 

features of these vascular ECoG (VECoG) signals have not been fully characterized in 
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humans. Participants with severe paralysis due to amyotrophic lateral sclerosis and 

brainstem stroke have been implanted in pilot clinical trials in Australia (n=4) and in an 

Early Feasibility study in the United States (n=6). 

We examined the VECoG signals from one US participant to identify spectral 

features associated with volitional motor intent (Figure 16). The recorded field potentials 

were filtered into standard frequency bands: alpha (8-13 Hz), beta (13-30 Hz), low gamma 

(30-80 Hz), and high gamma (80-200 Hz). For each band-limited signal, we calculated 

the change in root-mean-square voltage (Vrms) between rest and movement epochs, 

quantifying the percentage change of Vrms movement from rest (termed as modulation 

depth) for each trial. 

We investigated the features of the Stentrode signals and identified the spectral 

characteristics that exhibited strong and consistent changes in amplitude between rest 

and attempted movement conditions. The average modulation depth across all channels 

was 22.77 ± 6.34% in the low gamma band and 40.20 ± 6.00% in the high gamma band 

during right hand movement. The classifier performance for both the gamma bands 

remained stable, with the low gamma classifier achieving a mean accuracy of 93 ± 3% 

and the high gamma classifier achieving a mean accuracy of 96 ± 3%. These results 

suggest that the Stentrode reliably detects volitional motor signals and maintains long-

term stability for up to 10 months post-implantation. Our preliminary analysis indicates 

that these endovascular neural signals exhibit properties similar to those reported for 

ECoG-based measures of motor intent. Future research should explore VECoG signals 

over a longer time period and across more participants to confirm that the BCI can operate 

reliably and effectively over the course of several years.
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Figure 16. (a) The Stentrode device with 16 electrodes. (b) The Stentrode is a flexible electrode 

array implanted in the superior sagittal sinus using stent technology and sits adjacent to the 

primary motor cortex. The participants are instructed to attempt movement of specific body 

segments based on the cues on the screen. The data recorded by the Stentrode is sent 
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wirelessly to the external telemetry unit by the implantable receiver transmitted unit. The signal 

control unit sends the data further to the computer. (c) Sample VECoG recorded from eight 

channels during alternating cues of rest and go. (d) Modulation depth is calculated as the 

percentage change in the average amplitude during attempted movement window (Sgo) with 

respect to the average amplitude during the rest window (Srest). (e) Modulation depth for 

VECoG signals across all channels in the low gamma and high gamma bands while the 

participant attempted to move their right hand. ** Indicates t-test was significant at p < 0.01.

2.7.b. Presenter: Christoph Kapeller, PhD (g.tec medical engineering GmbH, Austria)

Title: Increased spatial resolution reveals separated EEG activation of individual finger 

movements

Master: Christian Herff, PhD (Maastricht University, Netherlands)

Theme: Signal acquisition

The study of high-density EEG electrodes is currently of great interest in BCI 

research. The 10-20 system, proposed by Jasper in 1958 [80], and the 10-10 extension 

by Chatrian et al. in 1985 [81], are the established standards by the American EEG 

society. In 2001, Oostenveld introduced the 5% system positions [82]. Our proposed 

setup with active ultra-high-density electrode (uHD) records EEG via scalp grids with an 

electrode spacing of 8.6mm, compared to a median Euclidean distance of 35.4mm in the 

10-10 system (Figure 17). This represents a four times higher spatial sampling, combined 

with an increased R² of the cross-channel EEG from 0.18 to 0.44, indicating a net increase 

of information content over all EEG signals [83]. Studies have shown that biomarkers for 

individual finger extensions achieved classification accuracy for two fingers by +6-7% 

from 10-10 EEG to uHD EEG [84,85]. Specifically, with a grand average accuracy of 

64.8% and a maximum of 79.2% for index versus ring finger [83]. A within-subject analysis 

of the uHD EEG vs 10-10 EEG showed a clear reduction of channels with multi-finger 

activation with more focused single finger sites over the motor cortex. Moreover, it is 

possible to discriminate between hand gestures and their imagination, namely, rock-

paper-scissors, with 72.7% and 71.3%, respectively, in a pair-wise classification [86], 

demonstrating the utility of a uHD EEG.
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Figure 17. A focal point overlying the sensorimotor cortex around the 10-20 position C3 shows 

the highest activation. Ten electrodes were color-coded according to the finger with the greatest 

significance in ERD/S change, one finger includes information from several fingers (Mult-finger).

A subject specific example is provided in Figure 18, which represents the 

superimposed finger activity from Subject 1 on the electrode distribution comparison plot 

(a) and the MNI head (b). Results show the analysis of the beta band (13-30 Hz), which 

was used for feature extraction. After calculating the Event-related 

synchronization/desynchronization (ERD/S), a Wilcoxon signed-rank test was used to 

find significant channels with movement-related beta band changes. Significant channels 

are colored respectively for each finger and multi-finger channels, which were found to 

be active for several individual fingers. Figure 2 shows that ultra-high density / 10-10 beta 

power revealed 11% / 11% single-finger, 1% / 61% multi-finger and 88% / 28% no-finger 

sites, respectively. ERD/S bubble plots reflect the radius from the active channels’ ERD/S 

amplitude. 
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Figure 18. Significant channels marked in red from the single finger movement paradigm 

comparing the uHD EEG and 10-10 EEG system. The bubble radius reflects the ERD/S 

amplitude. The table states the region of interest selected, the number of significant channels 

and the ratio of single and multi-finger activation.

As our study included only two subjects, the results are not generalizable. A larger 

cohort, encompassing both male and female participants, as well as varying preferred 

hand dominance, is necessary to improve the robustness and applicability of the findings. 

For optimal system performance of the ultra-high-density EEG system, hair removal is 

essential, as effectiveness diminishes with increased hair length. Comprehensive testing 

across various hair types is necessary to identify potential limitations. Additionally, as the 

number of electrode grids increases, the system's form factor becomes more complex, 

leading to extended setup times and reduced user comfort. Future research should 

integrate uHD EEG with source reconstruction techniques to further refine high-resolution 

neurophysiological localization through non-invasive recordings.
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2.7.c. Presenter: Simon Geukes (UMC Utrecht Brain Center, Netherlands)

Title: Ultra-high-density electrocorticography recordings of the human sensorimotor 

cortex

Master: Victoria Peterson, PhD (Instituto de Matemática Aplicada del Litoral, Santa Fe, 

Argentina)

Theme: Signal analysis

ECoG is a popular recording method for clinical and research purposes, including 

brain-computer interfaces [87]. Clinical ECoG grids have 10 mm inter-electrode distance 

(IED), while high-density (HD) ECoG grids have 3-4 mm IED. Both clinical and HD ECoG 

may spatially undersample the cortex, as the cortical resolution is higher than the 

resolution offered by these grids [88,89]. Ultra-high-density (uHD) ECoG, which offers 

submillimeter resolution, may resolve this. However, whether uHD ECoG can record 

distinct neural signals without considerable spatial oversampling remains unclear.

To investigate this, we simultaneously recorded intraoperative HD and uHD ECoG 

(Figure 19a-b) from the sensorimotor cortex while participants were awake (n=3) or under 

general anesthesia (n=1). During awake surgeries, the participants performed motor 

mouth or hand tasks. To verify signal quality, we computed the power spectra of the 

recorded signals. To investigate overlap between electrodes as a function of IED, we 

calculated the distance-averaged correlation: the average correlation coefficient between 

equidistant electrode pairs, for different frequency bands. Lastly, to quantify functional 

responses, we regressed the mean high-frequency band power (64-128 Hz) to the tasks.

We found that: 1) In all participants, the 1/f decay and noise peaks were similar in 

the power spectra of HD and uHD grids; 2) In three participants, HFB power overlapped 

only moderately (r: 0.35-0.65) between electrodes at 0.9 mm IED. This is illustrated in 

Figure 19c, which shows the distance-averaged correlation for the HD and uHD grid of 

one participant. 3) In one participant, 70% of the uHD electrodes significantly responded 

to the task, revealing a distinct spatial pattern where certain electrodes responded 

significantly while adjacent ones did not. Taken together, we conclude that uHD ECoG 

does not spatially oversample the sensorimotor cortex. Further investigation into optimal 
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recording procedures, re-referencing methods and analytical methods to quantify single 

electrode responses are needed to fully leverage the potential of uHD ECoG.
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Figure 19. (a) Left panel: illustration of the 96-channel HD grid (Ad-Tech Medical, Oak Creek, 

USA). A 128-channel grid (PMT Corporation, Chanhassen, USA) with the same IED and 

exposed diameter was used as well. Right panel: illustration of the uHD grid (CorTec Neuro, 

Freiburg, Germany). (b) Distance-averaged correlation for the HD grid (left panel) and uHD grid 

(right panel) of one participant. The frequency bands (in Hz) are denoted by the color coding. (c) 

High-frequency band response (64-128 Hz) to a motor mouth task for the HD grid (left panel) 

and uHD grid (right panel) of one participant. HD electrodes overlaying the uHD grid are not 

shown. Excluded electrodes are colored black. Electrode radius increases with the R2 value. 

Circumvented electrodes responded significantly to the task. (a) and (c) are adapted, with 

permission, from[90].

2.8 Novel techniques for advancing brain-computer interface performance

Integrating multiple modalities, such as incorporating both brain signals and other 

physiological signals as input, merging brain recordings with stimulation techniques, or 

exploring new analytic techniques hold promise for advancing BCI control and decoding 

capabilities. By harnessing the complementary strengths of diverse signals, BCI systems 

stand to benefit from heightened efficacy and enhanced accuracy, thereby amplifying 

their use in real-world applications. Moreover, developing innovative strategies for 

encoding movement patterns, optimizing dynamic stopping methods for diverse 

applications, and augmenting motor skill acquisition may unlock new dimensions of BCI 

functionality. 

2.8.a. Presenter: Tan Gemicioglu (Cornell University, USA)

Title: Transitional Gestures for Enhancing ITR and Accuracy in Movement-based BCIs

Master: Ning Jiang, PhD (University of Waterloo, Canada)

Theme: BCI non-implanted - control

Motor imagery and motor attempt-based BCIs enable users to communicate by 

sequentially performing different actions. Conventional interaction methods use a set of 

body parts or motions with a one-to-one mapping to commands. However, this mapping 

makes it challenging to use movement for high-speed spellers due to constraints in the 

number of possible commands. A recent interaction method, BrainBraille, uses a pseudo-
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binary encoding where up to six body parts can be tensed simultaneously and mapped 

onto a Braille character for language-independent alphabetic encoding. However, non-

invasive BCI modalities such as EEG and functional-near infrared spectroscopy (fNIRS) 

have limited spatial specificity and often struggle to distinguish simultaneous movements.

We propose a new method encoding transitions between gestures in different body 

parts to combinatorially increase the size of the command set by using transitional 

gestures where information is extracted from transitions between different movements to 

improve accuracy, number of possible commands, and information transfer rate (ITR). In 

a pilot study using the NIRx NIRSport, participants tensed the left hand and right hand in 

transitional patterns in a random order for 40 trials each. We applied a 0.09Hz low-pass 

Butterworth filter and performed independent component analysis. A support vector 

machine obtained 81% accuracy in left vs. right classification while obtaining 92% 

accuracy in left-to-right vs right-to-left classification, demonstrating the accuracy benefits 

of transitional gestures.

Then, we adapted the BrainBraille encoding scheme with a transitional encoding. 

BrainBraille is currently limited to a maximum of three simultaneous movements and uses 

27 out of 37 possible commands. Our transitional BrainBraille encoding would allow 

P(6,3)=120 commands, allowing a wider range of characters while maintaining the same 

constraints and potentially increasing ITR from BrainBraille’s current ITR of 143 bits per 

minute to 218 bits per minute. Our findings suggest that a transitional encoding can make 

a movement-based speller more feasible by increasing accuracy, speed, and flexibility in 

modalities with limited spatial specificity.

2.8.b. Presenter: Ceci Verbaarschot, PhD (University of Pittsburgh, USA)

Title: The effect of artificially created sensory feedback on motor cortex activity during 

task performance

Master: Marianna Semprini, PhD (Italian Institute of Technology, Genoa, Italy)

Theme: BCI implant - other

Intracortical microstimulation (ICMS) of the human somatosensory cortex induces 

localized sensations on an individual's paralyzed hand and can enhance control of a 
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brain-controlled prosthetic arm [91,92]. Typically, there exists a direct interaction between 

naturally occurring tactile sensations and motor function. Ongoing sensory input 

influences the activity of the motor cortex, leading to intricate patterns of both inhibitory 

and excitatory responses. We investigated whether artificial touch (created via ICMS) 

could have a similar effect on motor cortex activity. 

Two participants with tetraplegia with implanted intracortical microelectrode arrays 

in their somatosensory and motor cortices (Figure 20a) underwent ICMS trains of various 

amplitudes (40, 60, 80 µA) and frequencies (50, 100, 200 Hz), while they passively 

watched a movie. Next, we investigated the effect of ICMS (50 Hz, 60 µA) while they 

attempted (full hand grasp or individual finger) movements during an engaging Guitar 

Hero-like game (Figure 20b). We found that higher stimulation amplitudes linearly 

increased the global population activity in the motor cortex (Figure 20c). Meanwhile, 

frequency had varying effects in which stimulation at 50 Hz had a largely excitatory effect, 

200 Hz had a predominantly inhibitory effect, and lastly 100 Hz had mixed effects 

depending on the electrode (Figure 20c). Despite prominent effects on motor cortex 

activity, offline decoding of three individual fingers showed promise (89% accuracy) 

during 50 Hz ICMS. 

Our findings suggest that ICMS not only creates an artificial sense of touch during 

motor control but also modulates motor cortex activity in a stimulus-dependent manner. 

Under normal circumstances, dynamically evolving sensory input likely modulates motor 

cortex activity, enabling us to, e.g., tighten our grip when we sense that an object is 

slipping from our hands. In future research, we investigate whether ICMS could play a 

similar functional role during motor control. To do so, we will manipulate the congruency 

of the ICMS-evoked sensation location and the ongoing motor task. Often, participants 

will feel a sensation on the same finger that they attempt to move during the Guitar-Hero 

like game. Occasionally, we will evoke a sensation on a different finger, one that is 

incongruent with the ongoing motor task. If we find the motor cortex to encode the 

congruency of the sensory signal with the motor task, this will provide credence that ICMS 

can serve as a functional source of information during motor control.  
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Figure 20. Overview of study design and results. (a) Schematic illustration of the BCI setup. 

(b) Experimental design using either open-loop (left) or closed-loop (right) stimulation. (c) Main 

results of intracortical microstimulation in the somatosensory cortex on the motor cortex for 

different amplitudes (top) and frequencies (bottom).  

2.8.c. Presenter: Michael Wimmer (Know Center Research GmbH, Austria)

Title: Toward Hybrid BCI: EEG and Pupillometric Signatures of Error Perception in an 

Immersive Navigation Task in VR

Master: Marianna Semprini, PhD (Italian Institute of Technology, Genoa, Italy)

Theme: BCI non-implanted - other

The latest wearable devices used to visualize virtual reality (VR) content are 

equipped with built-in sensors and cameras to acquire user-specific physiological data, 

such as gaze or pupil size. Interactions with virtual environments may sometimes seem 

erroneous to users, as the behavior of the VR might not align with the user’s intentions or 

expectations. Previous research has shown that EEG responses to errors, i.e., error-

related potentials (ErrPs), can enhance the performance of BCIs [93]. The successful 

decoding of errors allows systems to take corrective actions, e.g., to stop unwanted 
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commands or provide visual aids. Since most error classifiers rely on brain signals, this 

study explores the potential of pupillometric signals for hybrid error decoding approaches.

For this purpose, we designed an interactive VR flight simulation in which 19 

participants navigated a glider through a series of targets (Figure 21). At random intervals, 

participants encountered unexpected behaviors or changes in the simulation, such as 

sudden displacements of the target locations and unintended glider movements. 

The grand average responses revealed pupil dilations peaking approximately 600 

ms after the error events. ErrPs were consistent with the existing literature [94]. The pupil 

dilations exhibited considerable variability across participants, which affects the 

performance and generalizability of classifiers. However, hybrid decoding approaches 

could significantly improve the accuracy in reduced EEG setups, i.e., using only one or 

three electrodes, by up to 3 to 4% on average and up to 8% at the participant level [95]. 

Studying the impact of such setup reductions has practical relevance, as they increase 

the BCI’s usability in real-world applications. Further analysis of the behavioral data 

showed that participants took on average more than 400 ms to react to error events. The 

offline error decoders we implemented could detect errors up to 50 ms faster than 

participants responded to them [96].

The results of this work suggest that error-related pupillometric responses have 

the potential to improve existing error decoding approaches and hence, the design of 

hybrid BCIs [95]. Next steps in advancing hybrid classifiers should include research on 

suitable features derived from pupil signals. Similarly, investigations into the impact of 

different data fusion approaches could further enhance the decoding performance. 

Finally, these contributions should be tested in real-time scenarios where the VR adapts 

dynamically to errors.
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Figure 21. Overview of the experimental setup. The participant is seated in a glider, wearing an 

EEG cap (a) and an HMD (b) to interact with the virtual environment (c). The joystick of the 

HMD (d), used to navigate the virtual glider, is attached to the physical glider’s control stick. 

Figure adapted from [95] with author consent.

2.8.d. Presenter: Mushfika Sultana (University of Essex, United Kingdom)

Title: Assessing the impact of transcranial Direct Current Stimulation on the enhancement 

of race driving skills

Master: Eli Kinney-Lang, PhD (University of Calgary, Canada)

Theme: BCI non-implanted - other

Recently, non-invasive brain stimulation like transcranial direct current stimulation 

(tDCS) has become popular and has been applied to focally change neuronal activation 

[97]. Although tDCS seems to be a promising approach for enhancing complex motor skill 

acquisition, very few studies have investigated the potential role of brain stimulation on 

race driving [98]. We have attempted an initial evaluation of the impact of anodal tDCS 

on race training. Toward this goal, we have analyzed multimodal experimental data 

consisting of EEG and telemetry from a driving simulator of 11 novice participants. 
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Twenty minutes of active or sham tDCS (PlatoWork by PlatoScience, 

Copenhagen, Denmark) was applied before a race driving task. Subjects were randomly 

and blindly assigned to one of two tDCS groups (6 active, 5 sham) balancing potential 

confounding factors (age, gender, driving proficiency, corrected vision). Each participant 

went through 10 experimental sessions (20 laps per session). The tDCS effect was 

evaluated through a mixed-design ANOVA where the lap time gain as a result of training 

was the response variable, the tDCS group was the between-subjects factor and the 

session index was the within-subjects factor. Furthermore, we assessed the average, 

standard deviation, and significance (with unpaired, two-sided Wilcoxon rank sum tests) 

of the lap times per group and session. Although no significant effect of tDCS on lap time 

gain can be established (F=0.63, p=0.76), additional post-hoc analysis showed that 

subjects in the active tDCS group exhibited better outcomes in sessions where intense 

learning takes place. Specifically, active-tDCS subjects performed in the last session 

significantly better (by almost 3 s on average) than sham-tDCS (active: 89.4±9.5, sham: 

92.0±10.5, p<10−17), although performance was balanced (no statistically significant 

difference between the two groups) in the first session. 

These preliminary results suggest that tDCS may be effective in supporting the 

learning of race driving, although the impact is not strong enough to be clearly observed 

in a session-wise, mixed-design ANOVA. It is important to note that the small sample size 

may account for the absence of a pronounced effect. Our findings indicate that tDCS can 

help novice users learn race driving more quickly, but the effect was modest and requires 

confirmation in future research. Further studies with larger populations will seek to clarify 

and validate these results.

2.8.e. Presenter: Sara Ahmadi, PhD (Radboud University, Netherlands)

Title: A model-based dynamic stopping method for code-modulated visual evoked 

potentials BCI

Master: Xing Chen, PhD (University of Pittsburgh, USA)

Theme: Signal analysis
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BCIs are evolving beyond mere assistive technology, with dynamic stopping 

methods offering a means to expedite their speed [99]. These methods allow for decisions 

to be made regarding symbol ejection or further information acquisition based on the 

decoder’s confidence level, thereby leveraging trial variance to enhance speed without 

compromising overall accuracy. However, conventional optimization metrics like symbols 

per minute and ITR may not adequately reflect system performance for specific 

applications or user types.  

In our proposal, we advocate for a model-based approach harnessing analytical 

insights into the underlying classifier model. By establishing that similarity scores between 

observed and predicted responses for both target and non-target classes follow Gaussian 

distributions, we frame the dynamic stopping as a binary hypothesis decision problem. 

Here, different costs are assigned to various courses of action, with the cost ratio (CR) 

representing the ratio between the cost of False Alarm and Miss. Using a likelihood ratio 

test based on Bayes criterion, we determine the decision region where the total risk, 

calculated as the sum of costs weighted by the likelihood of each action, is minimized 

[100]. 

Preliminary findings on a code-modulated visual evoked potential dataset [101] 

demonstrate the efficacy of our approach. By adjusting the cost ratio, we observed 

varying trade-offs between speed and accuracy. For instance, with a small cost ratio, the 

system exhibits rapid response times (average time = 318ms for CR=1) but relatively high 

error rates (Err=81.9% for a 36-class problem), which may suit applications where post-

processing, such as employing a language model, can compensate for lower accuracy. 

Conversely, increasing the cost ratio to CR=106 extends response time (average time = 

2.32 seconds) while substantially reducing error rates (Err=22.9%), rendering the system 

more suitable for error-sensitive applications. 

3. Conclusions

The Tenth International BCI Meeting provided a platform for trainees to showcase 

their research and engage in meaningful discussion with experts and the BCI community 

through master classes. The sessions, organized by the Postdoc & Student Committee 
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of the BCI Society, were designed to foster interactions between trainees and established 

researchers and encourage a conducive environment for learning and collaboration. The 

master classes are a unique way to showcase the breadth of BCI research, illuminating 

both the challenges and breakthroughs encountered across various fields.

The selected summaries featured in this paper offer insights into the multifaceted 

topics explored in BCI research, reflecting the ongoing efforts of researchers to advance 

technology. Divided into eight specific themes, including speech decoding, motor 

imagery, and closed-loop BCIs, each summary presents the presenter's work, preliminary 

findings, and conclusions. Notably, the inclusion of trainees and senior researchers as 

co-authors emphasizes collaboration and mentorship within the BCI community. The 

master classes will continue to highlight the remarkable contributions of BCI trainees at 

the upcoming Eleventh International BCI Meeting. 
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Abbreviations

aDBS - adaptive deep brain stimulation

AL - assistance level

ANN - artificial neural network

BRAND - Backend for Realtime Asynchronous Neural Decoding

BCI - brain-computer interface

BOTDA - backward formulation of optimal transport for domain adaptation 

CMD - cognitive-motor dissociation 

CNN - convolutional neural network
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DA - data augmentation

DAREPLANE - DAta driven REsearch PLatform for NEurotechnology

DBS - deep brain stimulation

DoC - disorders of consciousness

ECG - electrocardiography 

ECoG - electrocorticography

EEG - electroencephalography 

EMG - electromyography 

EOG - electrooculogram 

ERD - event-related desynchronization

ERP - Event-related potential

ErrPs - error-related potentials

ERS - event-related synchronization 

VECoG - endovascular electrocorticography

fNIRS - functional-near infrared spectroscopy 

GR - Generic Recentering 

HD - high density

HFB - high frequency band

HFD - Higuchi Fractal Dimension

ISPC - Inter-site phase clustering 

ITR - information transfer rate 

ICMS - Intracortical microstimulation

MEG - magnetoencephalography
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MI - motor imagery 

NFT - neural field theory

PAR - Personally Assisted Recentering 

PD - Parkinson’s disease

PICU -  Pediatric Intensive Care Unit

RNN - recurrent neural network

sEEG - stereo-electroencephalography

SMR - sensorimotor rhythm 

tDCS - transcranial Direct Current Stimulation

uHD - ultra-high density

VR - virtual reality 
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