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Figure 1: (a) Tongue gestures being used to control a head-worn device. (b) The TongueTap hardware setup, combining two 
of-the-shelf devices. (c) Data streams from six sensing modalities during a tongue gesture. 

ABSTRACT 
Mouth-based interfaces are a promising new approach enabling 
silent, hands-free and eyes-free interaction with wearable devices. 
However, interfaces sensing mouth movements are traditionally 
custom-designed and placed near or within the mouth. TongueTap 
synchronizes multimodal EEG, PPG, IMU, eye tracking and head 
tracking data from two commercial headsets to facilitate tongue 
gesture recognition using only of-the-shelf devices on the upper 
face. We classifed eight closed-mouth tongue gestures with 94% 
accuracy, ofering an invisible and inaudible method for discreet 
control of head-worn devices. Moreover, we found that the IMU 
alone diferentiates eight gestures with 80% accuracy and a subset 
of four gestures with 92% accuracy. We built a dataset of 48,000 
gesture trials across 16 participants, allowing TongueTap to per-
form user-independent classifcation. Our fndings suggest tongue 
gestures can be a viable interaction technique for VR/AR headsets 
and earables without requiring novel hardware. 
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1 INTRODUCTION 
Head-worn devices are increasingly ubiquitous in our lives due to 
the growing usage of headphones and virtual or augmented real-
ity (VR/AR) headsets. With the rising prevalence of such devices, 
new interaction methods have become necessary to control the 
devices without requiring an external controller. These interactions 
commonly rely on the hands, such as pressing a button on the 
headphones or hand-based gesture control for augmented reality 
headsets. Hands-free interaction methods such as speech recogni-
tion and eye tracking provide an alternative for use cases where 
the user’s hands may be permanently or situationally impaired. A 
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wide range of neuromotor disorders including Amyotrophic Lateral 
Sclerosis (ALS), muscular dystrophy and stroke greatly reduce the 
ability to move the hand voluntarily. Meanwhile, head-worn de-
vices are used in settings such as warehouses [50], manufacturing 
[8] and surgeries [21] where users’ hands are occupied and cannot 
be used for interactions. 

However, speech recognition, the most common hands-free in-
teraction method, is unusable when the environment is noisy or 
privacy is necessary. Gaze tracking requires continuous attention 
to sustain the interaction, making it difcult to control and distract-
ing from other tasks a user may be performing. Gaze and dwell, 
the most common approach for gaze-based interaction is slow and 
has a high error rate, especially for novices [14, 39]. As a result, 
both speech recognition and gaze tracking are inaccessible to a 
wide range of users, particularly when their interactions need to 
be discreet and ephemeral. 

Mouth-based interaction methods are hands-free, voice-free and 
eyes-free, ofering a deeply enabling approach to interacting with 
head-worn devices. Past work on mouth-based interaction methods 
have involved custom hardware that is around the jaw [44] and 
neck [54] or within the mouth [16, 53]. For mouth-based interaction 
to be used in everyday devices, both the device and the interaction 
must be discreet, necessitating sensors that can be embedded in ex-
isting form factors. While recent studies have investigated sensors 
around the ear [5] and eyes [66], these studies have been focused 
on a single sensing modality with custom hardware, limiting the 
reproducibility and accessibility of research on mouth-based inter-
action. Moreover, due to the emphasis on silent speech commands 
[12] for these interfaces, there has been a bias towards modalities 
that can capture multi-organ movement from the lips to the larynx 
due to vocal articulation. As a result, there is a gap in multimodality 
and a lack of mouth interactions that are invisible for daily use. 

We created a tongue gesture interface (TongueTap), by combin-
ing sensors in two commercial of-the-shelf headsets. Using this 
interface, we demonstrate that even sensors far from the mouth 
can recognize tongue movement. Compared to silent speech inter-
faces, interfaces using tongue gestures minimally engage the lips 
and jaws, and can be performed with the mouth closed, generating 
limited visual movement. Closed-mouth tongue gestures allow pri-
vacy during ephemeral interactions such as increasing volume in 
earables or closing a notifcation in augmented reality (AR). The 
availability of the two devices we used in this study may help make 
it easier for researchers to reproduce and experiment with their 
own mouth-based interaction methods using the same devices. We 
evaluate the performance of eight diferent gestures and six sensing 
modalities via data gathered simultaneously for comparability and 
make the dataset publicly available. 

We evaluated TongueTap in a series of ofine tests comparing 
accuracy across diferent gestures, sensing modalities, data amounts 
and moving window sizes across sixteen participants spread over 
two study locations. We compared our eight selected gestures to 
two controls, blinking and sticking out the tongue, as a comparison 
for gaze and facial interaction researchers. We developed a pipeline 
for real-time user-independent classifcation of tongue gestures, 
demonstrating it in diferent desktop applications. We also collected 
informal qualitative feedback and NASA Task Load Index (TLX)[22] 
questionnaires for each gesture. 

The key contributions of this paper are: 
(1) Tongue Gesture Recognition using commercial head-worn 

devices, increasing the accessibility and reproducibility of 
research on mouth-based interaction methods. To the best 
of our knowledge, this is the frst tongue interface designed 
for of-the-shelf use. To facilitate such use, we’ve made our 
data open-access at https://zenodo.org/record/8247217. 

(2) Gesture Recognition Experiments using 8 closed-mouth 
tongue gestures and two baseline conditions. We report our 
recognition accuracy on user-dependent and independent 
models, and present our fndings for the ideal window sizes, 
gesture subsets, efects of pre-training, and a NASA-TLX. 

(3) Sensing Modality Experiments that reveal the most de-
scriptive sensors and sensor groups (Table 1). Our fndings– 
such as that 80% of the accuracy was due to the Inertial 
Measurement Units (IMUs)—are useful for the design of fu-
ture head-worn tongue gesture platforms. 

2 RELATED WORK 
Wearable hands-free interaction approaches have diversifed sig-
nifcantly over the years with advanced speech recognition and 
techniques such as eye tracking [3], facial gestures [41, 60] and 
brain-computer interfaces (BCIs) [63]. For developing TongueTap, 
we primarily drew from past research in gaze and teeth interactions, 
facial muscle sensing in earables, and the glossokinetic potential, 
an electrophysiological motion artifact by the tongue. 

2.1 Hands-free Interaction 
Speech recognition and voice commands have an extensive history 
in facilitating hands-free interaction with head-worn devices [15] 
and have improved alongside speech recognition technologies. The 
limitations of speech recognition in diferent settings has led to a 
need for hands-free and voice-free interaction approaches. 

Eye tracking emerged quickly as one such approach [3]. Gaze and 
dwell, an interaction method relying on fxating the eye on a single 
point, has remained as the most common method of gaze-based 
interaction [62]. While expert users of the method can achieve 
up to 300ms with adjustable dwell times [39], dwell-based gaze 
interactions have sufered from high error rates and cognitive load 
with limited speed [14]. Eye gestures have been used at up to 250ms 
in head-worn displays [7, 13]. However, occupying the eyes with 
gestures is often undesirable as they draw too much of the user’s 
attention. 

BCIs have attempted to control devices without requiring move-
ment [63]. Steady state visually evoked potentials (SSVEP), showing 
rhythmic visual stimuli to the user, has been used with VR head-
sets to classify visual targets [30, 40]. While useful for paralyzed 
users, SSVEP has thesame problems with eye tracking due to con-
stant visual attention. BCIs have been efective with movement, 
and Bleichner et al. have shown attempted mouth movements to 
be decodable even with paralyzed users, providing support for the 
viability of mouth-based interactions [6]. 

2.2 Mouth-based Interaction 
The mouth has been a target of physiological sensing for various 
research aims. Human activity recognition researchers have focused 
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Device Modality Location Frequency Details 

IMU Behind left ear 52Hz 6-axis, 3 from accelerometer and 3 from gyroscope 

Muse 2 EEG 2 across forehead, 2 behind ears 256Hz 
5-axis: 2 temporal, 2 frontal electrodes and 

1 amplifed auxiliary channel 

PPG Forehead 64Hz 3-axis, 2 IR and 1 red LED 

IMU Forehead, middle of face gasket 998Hz 
6-axis, 3 from accelerometer and 3 from gyroscope, 

HP reports 512Hz instead of 998Hz 

HP Reverb 

G2 Omnicept 

Edition 

PPG* Forehead, middle of face gasket 0.2Hz 
No direct access, reported as Heart Rate and 

Heart Rate Variability 

Eye Tracking Between eyes in VR headset 120Hz 21-axis gaze tracking and pupillometry for both eyes 

Head Tracking Calculated from cameras around headset 54Hz 
19-axis linear and angular position/velocity/acceleration 

accessed through OpenXR 

Mouth Camera* In front of nose, bottom of headset 90Hz 400x400 grayscale pixels from IR camera 

Cognitive Load* Calculated from eye tracking and PPG 1Hz 1 minute after start, cognitive load and confdence [2] 

Table 1: Sensors and calculated measures from the Muse 2 and Reverb G2 Omnicept Edition. Modalities marked with * were not 
used for classifcation for reasons explained in Section 3.1. 

on detecting daily activities such as chewing, drinking and speaking 
[4]. Facial and mouth expressions have been sensed for use in virtual 
reality and teleconferencing [9, 35, 36]. 

Much interest in mouth-based sensing and interaction has fo-
cused on silent speech, an interaction method enabling speech 
communication when an audible signal cannot be used [12]. Silent 
speech interfaces have been targeted as a strategic interaction 
method for enabling fast, hands-free communication using sensors 
within and around the mouth. These have allowed communica-
tion with head-worn displays [5], interactions with voice assistants 
[26, 29] and text entry [28] by developing recognition models with 
large vocabularies for sensors around or inside the mouth. 

Some silent speech interfaces have relied on non-contact ap-
proaches using lip reading [49, 58], infrared imaging [65] and acous-
tics [17]. While these are useful for interacting with mobile devices 
such as smartphones, head-worn displays and earables already have 
contact points where sensors can detect mouth movements, allow-
ing greater fexibility in sensing approaches while keeping sensors 
invisible. The potential uses have resulted in a push towards non-
intrusive silent speech for interacting with head-worn displays, via 
infared camera in HMDSpeller [1] and via acoustics in EchoSpeech 
[66]. Particularly exciting about EchoSpeech is the discreet form 
factor of the sensors, showing that they could be integrated into 
future head-worn displays without changing device shape. 

After a silent speech interface detecting ear canal deformation 
by Sahni et al., there’s been interest in making silent speech in-
teractions for earables [52]. EarCommand achieved 32-word silent 
speech recognition with earphones and MuteIt characterized silent 
speech recognition using the jaw as a secondary articulator [23, 27, 
56]. Roddiger et al. note that mouth-based interactions with ear-
ables have successfully detected gestures from the jaw, teeth and 
tongue with surprising accuracy [51]. Such earables have made use 
of muscles connecting the muscles around the mouth, including 
the tongue, to the styloid process near the ear. The styloglossal 
muscle has made tongue sensing possible through sensors in the 
upper face, which TongueTap also makes use of, for mouth gestures 
rather than silent speech. 

Mouth gestures difer from silent speech commands by allowing 
a wider range of more ephemeral and short-term interactions for 
daily, quick usage. Many mouth gesture interfaces have involved 
teeth clicks [59, 61] and jaw clenching [27], but we attempted to 
minimize jaw and teeth movement as such gestures are audible and 
visible to an observer. Mouth gestures can be more discreet than 
silent speech by keeping input intraoral [16]. They can make mobile 
input easy for wearable devices without necessitating silent speech 
commands [42]. Chen et al. mapped the space of mouth gesture 
design in more detail, fnding that users prefer short and direct 
gestures while avoiding natural motions like smiling [10]. Chen et 
al. further note that mouth gestures can provide haptic feedback 
for themselves through various surfaces around the mouth, making 
closed-mouth tongue gestures an appealing intraoral interaction 
method. 

2.3 Tongue Interfaces 
Many tongue interfaces have used intrusive methods that require a 
retainer or magnet inside the mouth [37, 43, 52, 53]. While this ap-
proach provides reliable signals, as demonstrated by SilentSpeller’s 
1164-word vocabulary, it comes at the cost of making users uncom-
fortable and limiting interaction duration [28]. 

Non-intrusive approaches have tried to replace such tongue 
interfaces using electromyography (EMG) signals from around the 
cheeks, neck and jaw, [44, 54, 64] or pressure sensors on the cheek 
[11]. Such interfaces still occupy the lower face, making tongue 
interactions very inconvenient for daily use. Instead, non-contact 
methods have used cameras [38, 48] and Doppler radar [20]. These 
methods require the tongue gestures to be detected through external 
movements, making them less viable for discreet, closed-mouth 
tongue gestures. A tongue interface that stands out from among 
such interfaces is TYTH, which only uses electroencephalography 
(EEG) and EMG sensors around the ear to detect tongue gestures 
[47]. TYTH uses the hypoglossal cranial nerve and the styloglossus 
and hyoglossus muscles, the same muscles allowing earable silent 
speech interfaces and a primary target for TongueTap. However, 
TYTH requires a custom headset and was still highly visible to 
observers due to the gestures chosen. 
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Some tongue interfaces have made use of the glossokinetic po-
tential, an electrophysiological motion artifact caused by tongue 
movement that is commonly observed in EEG studies. Nam et al. 
have explored the glossokinetic potential for their tongue gesture in-
terfaces controlling robots and electric wheelchairs [45, 46]. Kæseler 
et al. have investigated the glossokinetic potential as a movement-
based brain-computer interface, achieving the discreetness of brain-
computer interfaces with a much more reliable movement-related 
potential than typically possible [25, 34]. This was the second signal 
targeted by TongueTap in addition to the styloglossus muscle out-
lined in the previous section, although it showed an underwhelming 
result compared to the IMU. By including all of these modalities in a 
single study, we hope to provide a more comprehensive comparison 
of the diferent sensing modalities for tongue gestures. 

3 DESIGN 

3.1 Hardware Selection 
We primarily selected hardware to include a range of sensors, with 
an emphasis on motion and electrophysiology based on past per-
formance of IMUs in earables [41, 56] and EEG/EMG in tongue 
gestures [26, 47, 54]. While IMUs are available in some earables 
and in the correct position for tongue sensing, no commercial head-
phones contain EEG/EMG sensors at the time of writing. Instead, 
we sought to select a VR/AR headset capable of all such sensors, but 
the location of IMUs and the lack of reliable EEG or EMG sensors 
in commercial VR/AR headsets made it difcult. We thought the 
HP Reverb G2 Omnicept Edition (OE), the VR headset with the 
widest range of sensors among the headsets we looked at, would be 
sufcient for our goals as its documentation mentioned facial EMG, 
yet these sensors were not included in the headset. We combined 
the Reverb G2 OE with an EEG headset such that wearing both at 
the same time wouldn’t be too uncomfortable for the study dura-
tion. We note that despite using a VR headset and EEG headset, we 
believe the most meaningful use cases of tongue gestures are for 
earables and AR. The headsets we selected are equivalent to what 
sensor placement in earables and AR headsets could be. 

The hardware for TongueTap consists of an HP Reverb G2 OE VR 
headset [2] and a Muse 2 EEG headband [33]. The sensors contained 
by these devices are described in more detail in Table 1. Notably, 
both headsets contained IMUs and photoplethysmography (PPG) 
sensors. We excluded the calculated measures of the Reverb G2 OE 
as their frequency was too low, with the heart rate and variability 
at 0.2Hz and cognitive load at 1Hz. Moreover, we excluded the 
mouth camera, originally one of the most promising sensors, due 
to challenges with the Omnicept software used for data collection 
making it impossible to obtain the images. As we later elaborate in 
Section 8.1, the Muse 2 EEG headband may have limited our EEG 
results due to the fve dry electrodes being on the forehead and 
noisier than gel electrodes. 

The two headsets can be ftted to a user by extending, then 
contracting the Muse 2 on the user’s forehead and repeating the 
same process with the Reverb G2, fnalized by tightening the head 
strap to the top of the user’s head. The combined hardware puts 
the Muse 2’s forehead sensors slightly above the top of the Reverb 
G2’s face gasket, as shown in Figure 1b. 

Gesture Name Description 

Single Tap Tap front upper teeth once with tongue 

Double Tap Tap front upper teeth twice in a row with tongue 

Shake Swing tongue left and right repeatedly 

Left Cheek Tap left cheek with tongue 

Right Cheek Tap right cheek with tongue 

Mouth Floor Touch bottom of mouth, behind lower teeth with tongue 

Curl Back Curl tongue up and towards the back of the palate 

Bite Gently bite on tongue with front teeth 

Figure 2: Eight discreet, closed mouth tongue gestures and 
how they are performed. 

3.2 Gesture Design 
In selecting gestures, we made sure that all of the gestures could 
be performed with the mouth closed so that there were neither 
auditory nor visual cues to a third-party observer. As Chen et 
al. have already conducted a gesture elicitation study for mouth 
gestures, we relied on their fndings in choosing our gestures [10]. 
However, we deviated from their “best” gestures as we also sought 
to have a spatial mapping of the gestures around the mouth while 
ensuring they would be easy to recognize by machine learning 
models [18]. For example, we sought to have a gesture pointing up, 
which became curling the tongue above and backward, and another 
pointing left and right, which was performed as a tap on the left 
and right cheeks. The eight gestures selected are shown in Figure 
2. Notably, only three of the gestures require any jaw movement 
while others only engage the tongue. All the gestures are silent, 
contained within the mouth and use the teeth, cheeks and palate 
for haptic feedback. 

We had a total of 10 gestures for our study. In addition to the 
eight tongue gestures described in Figure 2, we selected two control 
gestures, “Blink” and “Stick Out” to benchmark our performance. 
The “Blink” serves as a point of comparison for gaze tracking and 
BCI researchers while helping verify signal quality and timestamp-
ing by using the high-amplitude EEG signals and eye tracking 
measurements generated during the gesture. Meanwhile, the “Stick 
Out” gesture is an open-mouth gesture where the tongue is stuck 
out to make usage obvious because the eight closed-mouth gestures 
were sometimes too discreet to be noticed by the experimenters. 
The “Stick Out” gesture is also comparable to lip-based gestures 
such as those used in LipIO [24] as the tongue and jaw motion are 
similar. 

4 IMPLEMENTATION 

4.1 Data Collection Software 
The data from the Muse 2 and Reverb G2 OE devices was synchro-
nized using the Lab Streaming Layer (LSL) [31], a system for time 
synchronization commonly used for multimodal brain-computer 
interfaces. LSL allows both real-time streaming as well as recording 
streamed data to an extended data fle (XDF) using its own Lab 
Recorder software. For the Muse 2, we used BlueMuse [32], an 
open-source tool for streaming LSL data from Muse. For the Reverb 
G2 OE, we created a custom data streaming tool in the Unity game 
engine built on HP’s Omnicept software and the C# endings for LSL. 
Outside the Omnicept software, the Reverb G2 also provides the 
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Figure 3: Data fowchart for both ofline and online recogni-
tion with TongueTap. 
position tracking data used in VR applications via OpenXR, which 
we added to our streaming tool for another measure of motion 
tracking. 

During data collection, the user can press the “A” button on a 
Windows Mixed Reality controller to start a gesture and release 
it to stop the gesture, continuing to the next one. As gestures of-
ten take variable duration to complete, this allows more accurate 
boundaries to the gesture while also measuring the duration. If the 
user believes they made a mistake, they can instead press the “B” 
button to delete the previous gesture and redo it. The “Press”, “Re-
lease” and “Delete” signals from these controller activities are also 
synchronized over LSL. All data is either stored in an XDF using 
the LSL Lab Recorder for ofine recognition or streamed directly to 
a Python script processing moving windows from the data stream. 
The full data fowchart is shown in 3. 

4.2 Gesture Recognition Approach 
Our pre-processing pipeline used a 128Hz low-pass flter using 
SciPy and Independent Component Analysis (ICA) on the EEG 
signals while applying Principal Component Analysis (PCA) to 
the other sensors, each sensor separately from the others. ICA 
and PCA components were equal to the number of channels or 
axes for each sensor, for example, fve components for EEG and 
six for IMU. The accelerometer values from the IMUs had gravity 
subtracted onboard the devices, so no additional pre-processing 
was performed for them. Then, we extracted 400ms windows from 
each gesture using MNE, beginning 100ms before the button press 
and ending 300ms after. Our gesture recognition models were not 
capable of handling invalid or raw time series data, so we removed 
chunks of the time series where any sensor was invalid, fattened 
the data into a single vector for every gesture and concatenated 
the sensors. We note that a model meant for time series may not 
require fattening and have better accuracy, although the varying 
frequencies of the diferent sensors make applying such a model to 
the data challenging. 

For gesture recognition, we designed a hierarchical model as 
shown in Figure 4. Our fnal model used a Support Vector Machine 
(SVM) in Scikit-Learn using a radial basis function (RBF) kernel 
with hyperparameters C=100 and gamma=1 to do binary classifca-
tion and determine whether a moving window of data contained 
a gesture or if it was a non-gesture. If the model decided it was 
a gesture, the fnal classifcation was done by a multi-class Ran-
dom Forest Classifer with hyperparameters: 40 max. depth, 2 min. 
samples per leaf, 800 estimators. 

Figure 4: Architecture of gesture recognition model. Each 
sensor is processed separately until the SVM binary classif-
cation stage. 

Age 20 to 34, average 25.6 

Gender 9 Men, 5 Women, 2 Non-binary or gender diverse 

Ethnicity 9 Asian, 4 White, 2 Middle Eastern, 1 Black 

Occupation 12 Students, 2 Interns, 1 Researcher, 1 Teacher 
Table 2: Participant demographics for both study locations. 

Prior to reaching the hierarchical model, we experimented with 
Support Vector Machines, Random Forest Classifers, Multi-Layer 
Perceptrons and Logistic Regression for the classifer. For dimen-
sionality reduction, we tried PCA, ICA as well as Linear Discrimi-
nant Analysis (LDA). We found that the Random Forest Classifer 
always outperformed when doing multi-class classifcation yet the 
Support Vector Machine outperformed in binary classifcation, lead-
ing to the hierarchical approach for more optimally handling rest 
sequences. The dimensionality reduction difered for the sensing 
modalities, where ICA was more efective for EEG while other sen-
sors were more successful using PCA. For tuning, as well as testing 
the accuracy of these models, we used 5-fold cross-validation while 
keeping a distinct testing set from 20% of the data. By doing so, we 
prevented overftting on the testing set while tuning the models. 

We attempted traditional machine learning methods instead of 
deep learning approaches as we were aiming for a classifer that 
could be executed in less than 100ms reliably. However, given the 
size of our dataset, deep learning methods could be plausible in rec-
ognizing tongue gestures. In our case, we didn’t fnd it particularly 
necessary as we were already able to achieve a high enough accu-
racy in multi-class classifcation without leveraging deep neural 
networks. 

5 DATA COLLECTION 
The goal of our study was to create a large dataset of tongue gestures 
for evaluating tongue gesture recognition with sensors in of-the-
shelf devices. Our study procedure was reviewed and approved by 
the Ethics Review Board at Microsoft prior to recruitment. 

5.1 Participants 
Participants were recruited at two locations (Redmond, WA, USA 
and Atlanta, GA, USA) through fiers around campus with a QR 
code, a mailing list for participants of past studies, and channels on 
Microsoft Teams. Participants were required to be 18-69 years in 
age, fuent in English and have normal vision, motor and cognitive 
abilities to be able to follow instructions and use the VR headset 
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safely. After the study, participants were compensated $50 in the 
form of a gift card of their choice. The demographics for the 16 
participants are shown in Table 2. Participants also had a diverse 
range of hair length, style and texture including braided and curly 
hair, ensuring signals could be obtained even for users for whom 
BCIs traditionally fail to work. 

5.2 Tasks and Procedure 
When participants arrived at the study, we described the procedures 
and obtained informed consent. After participants were introduced 
to the study, we ftted the Muse 2 and then the Reverb G2 onto the 
participant’s head and verifed that they were able to see the Unity 
experimental interface on their display. We confrmed EEG contact 
quality by ensuring all electrodes had a standard deviation below 
20 microvolts and waited 1 minute for all the sensors and calculated 
measures to stabilize before starting data collection. 

The participants were then asked to do a practice round where 
they performed each gesture 5 times. The practice round served to 
help verify the signal quality, familiarize the participants with the 
press-and-release approach to recording and ensure that partici-
pants were doing the gestures correctly. As the gesture descriptions 
weren’t very clear and difcult to demonstrate, this step served an 
important role in normalizing gesture movements across partici-
pants. 

Afterward, participants started the main study for collecting the 
full dataset. The study consisted of 60 self-paced trials, separated 
into six batches of our 10 gestures. Participants performed the study 
fully in VR using the visual display in the Reverb G2, shown in 
Figure 5. At the start of a trial, participants were prompted which 
gesture they were to perform. During a trial, participants performed 
that gesture repeatedly, marking the start and end point of each ges-
ture using the “A” button on the Windows Mixed Reality controller 
(i.e. button-down, button-up). Participants repeated the gesture 50 
times in each trial while a visual counter incremented with each 
button press. Once they reached 50, the trial would end. This cre-
ated a total of 3000 training examples per participant. In between 
batches, participants received a 10 second mandatory rest period 
to recoup attention. They were allowed to make other movements 
during rests, and we handled this “non-gesture” data as a null se-
quence where normal mouth and head motions could occur. Due 
to the long duration of the study, participants could also take an 
optional break of up to two minutes after every 15 trials. 

At the end of the study, participants flled out a basic demo-
graphic survey and gave qualitative feedback on their experience 
with the interface. Additionally, the eight participants in the At-
lanta site completed a NASA-TLX questionnaire for each of the 10 
gestures. This was not completed at the other site due to being a 
later addition to the study protocol. The study took approximately 
1.5 hours in total. 

6 RESULTS 
After data was collected from all participants and the models were 
optimized as described in Section 4.2, we performed a series of 
ofine experiments for gesture classifcation. For the below experi-
ments, unless otherwise specifed, we used an 80/20 train-test split 
to build a user-dependent model with the eight gestures and rest 

Figure 5: A participant wearing our experimental interface 
while performing data collection in VR, with sensor positions 
shown over it. Eye tracking is within gasket and omitted. Par-
ticipants marked gestures using a VR controller, and received 
visual feedback indicating their position in the study. 

Figure 6: Sensing modality experiment. Classifcation across 
8 gestures, mean of 16 participants. 

condition using the hierarchical random forest and support vector 
machine model. 

6.1 Classifcation and Sensing Modality 
The result of most interest to us from the study was which sensors 
were most efective at classifying tongue gestures. While some of 
our sensors already contained multiple modalities, such as the IMUs 
including an accelerometer and gyroscope, we treat each stream as 
its own modality for the purpose of this comparison as they can be 
packaged together. Initially, we compared each sensing modality 
independently, but we observed that multimodal combinations were 
able to achieve a higher accuracy than a single modality alone. In 
particular, the most efective method was to combine the IMU on 
the Muse EEG headset with the PPG. The results for each modality 
and multimodal confguration is shown in Figure 6. 

To our surprise, EEG was not particularly efective, although this 
may have been due to the location of the sensors being too close 
to the eyes, which produce a much stronger artifact. The IMU on 
the Muse turned out to be our most efective sensor, achieving 80% 
alone. Multimodal combinations including the Muse IMU were even 
more efcient, with a combination with the PPG sensor achieving 
94% accuracy. While we have not observed this in prior literature 
as the PPG has never been used, we suspect this may be due to a 
greater blood fow to the entire face during tongue movement. We 
also found promising results when using the head tracking of the 
VR headset, although the head tracking may be less efective in a 
more ecologically valid confguration. 
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Figure 7: Confusion matrices for user-dependent and user-
independent classifcation with all gestures and controls. 

Figure 8: Samples per gesture and window size experiments. 
Classifcation across 8 gestures, mean of 16 participants. 

6.2 Gesture Classifcation 
For classifying between the gestures, we created confusion matrices 
for both user-dependent and user-independent classifcation In this 
case, we decided to include the “Blink” and “Stick Out” control 
gestures as we were curious if gestures would be confused with 
other movements of the face. For user-independent classifcation, 
we used a leave-one-user-out cross-validation for testing instead 
of a 80/20 test split averaged across users. We chose this approach 
as we sought to include no data from the participant being tested 
in the training dataset. As shown in Figure 7, the “Shake” gesture 
where the tongue is swung sideways was the gesture with the most 
error in the user-dependent model, being confused for the “Mouth 
Floor” gesture. The user-independent model had the classifcation 
error far more distributed, although the overall accuracy decreased 
to 80%. 

In addition to classifying between gestures, we evaluated the 
amount of data per participant and window size necessary to get 
reliable accuracy. As shown in Figure 8, we found that recognition 
accuracy decayed rapidly after a dataset size of 180 samples per 
gesture and window size of 400 milliseconds. While this may be due 
to the hyperparameters chosen, the inability to reduce the dataset 
size suggests data augmentation methods may be necessary for 
achieving generalizable tongue gestures without collecting even 
larger datasets. 

6.3 Gesture Usability 
Quantitative metrics on the usability of gestures was collected using 
a NASA-TLX questionnaire, reported in Figure 9. Some of the ges-
tures, such as curling the tongue back were challenging to perform, 
with participants pointing out they felt more tired after trials for 
the gesture. However, we found that the single and double tap, as 

Figure 9: NASA-TLX questionnaire responses comparing the 
tongue gestures. 

well as biting the tongue were comparable to blinking in cognitive 
load. Aligning with Chen et al.’s results [10], participants showed a 
preference for tongue gestures that were shorter in duration. 

For the informal qualitative feedback, participants noted that 
tongue movements in the front of the mouth, such as “Bite” and 
“Single Tap” were more convenient, which aligns with the NASA-
TLX results. Many participants struggled with interpreting what 
gestures meant; almost all of them asked for clarifcation on how 
“Mouth Floor” should be performed. P3 pointed out that they didn’t 
know when to stop “Shake”, which made them confused. P9 men-
tioned that while they felt they touched the cheek for “Left Cheek” 
and “Right Cheek”, they weren’t sure when was the right time to 
stop. Such an issue could be solved by real-time feedback when 
using the interface. 

7 DISCUSSION 

7.1 Integrating Tongue Gestures to Devices 
Based on the sensors with the best accuracy, we can observe that 
the IMU behind the ear is a low-cost method of detecting tongue 
gestures with a position allowing it to be combined with past mouth 
sensing approaches such as Nguyen et al.’s ear EMG [47] and Jin et 
al.’s in-ear acoustics [23]. As a result, an IMU or a combination of 
these approaches can be used in earables or smart headphones and 
head-worn displays with relatively few modifcations to existing 
hardware. Discreet, hands-free tongue gestures could replace touch-
based gestures on these devices or be an alternative confguration 
for them. Potentially, the user could receive additional haptic feed-
back after performing gestures by adding additional components 
such as ultrasound transducers [55] or capacitive electrodes [24]. 
We chose not to include any custom hardware in this study as it 
would be against our goal of convenient replicability, although our 
omission of existing custom approaches makes comparison harder. 

Another step critical for making tongue gestures viable for prod-
ucts is a reliable, user-independent classifcation model. While 
the user-independent model can already achieve above 80% ac-
curacy, this wouldn’t be sufcient for using such a classifer re-
peatedly to control an application. We also expect that current 
user-independent accuracy would decay when taken outside the 
lab conditions. A two-IMU approach as shown by Srivastava et al. 
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Figure 10: Four hands-free applications used for real-time 
tongue interactions. (a) A maze game. (b) A matching game. 
(c) A “double up” game similar to 2048. (d) A tubular bell 
musical instrument interface. 

may help improve the generalization of the IMU signals [56]. An 
ear IMU could be combined with VR position tracking in a similar 
manner. An especially vital task would be obtaining a better model 
of non-gesture motion. 

7.2 Real-time Implementation 
In addition to the ofine results, we implemented a real-time recog-
nizer for tongue gestures. The ofine model was pickled in Python, 
then unpickled for the real-time algorithm, which then captured a 
window of data repeatedly from the LSL stream using a ring bufer. 
As extra conditions for a positive gesture classifcation, there had 
to be enough data to fll the ring bufer and 400 milliseconds must 
have passed since the previous positive gesture classifcation. This 
helped prevent repeated activations of the gestures. When the real-
time recognizer detected a gesture, it would trigger a keyboard 
press or mouse click, which was used to facilitate interactions with 
Universal Windows Platform apps. Given the success of IMU and 
PPG, we decided to test the real-time interface using only the Muse 
2, without a VR headset. We combined the real-time tongue gesture 
recognizer with a Tobii desktop eye tracker, successfully controlling 
multiple hands-free games and an interface for controlling a music 
instrument [19] as shown in Figure 10. Real-time recognition typi-
cally required participants to be sitting still due to the limitations 
of the current data, but the interface successfully detected tongue 
gestures with a latency of 400 milliseconds. 

7.3 Ecological Validity 
While our study included multiple locations, they were both con-
trolled lab environments where the participant was only moving 
to execute the gestures. For the gestures to translate to more re-
alistic environments, a more ecologically valid study design with 
multiple sessions and mobility between environments is necessary. 
The real-time model developed in this paper will help in testing the 
usability of tongue gesture interactions in realistic settings. 

In the future, we plan to conduct studies where participants 
may be performing other tasks such as walking, eating and talking 
to better characterize gestural and non-gestural movements. We 
would also like to test our tongue interface in settings emulating 
typical tongue gesture use cases where the sensor ft quality may 

decay and environmental noise would vary due to the mobility of 
head-worn devices. Our chunked block-based study design could 
be replaced by an event-based study design to better capture and 
evaluate gestures in daily interactions. 

8 FUTURE WORK 

8.1 Sensing Alternatives 
The most useful sensors in our experiment were the IMU and PPG, 
but there are still many sensors that could be used in head-worn 
displays to detect tongue gestures. Acoustic approaches have been 
efective in sensing mouth movements in earables [23, 35] and 
could easily be applied in current head-worn devices. Moreover, 
the motion at the back of the ear captured by the Muse 2 IMU could 
potentially be detected in other modalities such as stretch sensors. 

The sensors we used could also have diferent positions to make 
them more efective. Our EEG results fell short of our expectations 
based on prior work by Kæseler et al. [25, 34], which we suspect 
is due to the poor facial positioning of the Muse 2 EEG sensors, 
where there was much greater noise due to eye movements as 
demonstrated by the Blink control gesture. EEG and EMG sensors 
in the ears, around the nose piece and on the head strap may prove 
more useful for sensing tongue movements in head-worn displays. 
For earables, in-ear EEG would likely be a better option. 

8.2 Tongue Interaction for Augmented Reality 
We believe the most promising application for tongue interactions 
is in controlling AR interfaces. In contrast with VR, AR headsets 
are often used while interacting with other people in shared spaces, 
making discreet control of the interface more important. While 
typically not near the ear, most AR headsets contain an IMU already, 
making it easy to integrate our system into these devices. Tongue 
taps could be a suitable alternative to hand gestures like the “air 
tap” present in the HoloLens. AR headsets like the HoloLens 2 and 
Magic Leap 2 also include eye tracking as a potential sensor for 
facilitating interactions [57], which could be combined with tongue 
gestures to enable point & click interactions [19]. We plan to study 
this multi-organ interaction further by experimenting with its use 
in AR headsets and comparing it to other gaze-based interactions. 

9 CONCLUSION 
In this paper, we presented TongueTap, a tongue gesture inter-
face that does not require any additional sensors beyond those 
available in commercial head-worn devices. We found that IMUs, 
PPG and motion tracking capabilities in head-worn devices can 
perform eight-gesture classifcation at greater than 70% accuracy 
and tried combinations of sensors that may enable tongue gesture 
interactions in head-worn displays with minimum cost and hard-
ware modifcations. We determined that some tongue gestures like 
tapping on the front teeth and biting on the tongue had cognitive de-
mands comparable to blinking. We also found that tongue gestures 
can be executed and recognized at 400ms, less than gaze and dwell 
rates for most users. Through the sensing capabilities, gestures 
and interactions demonstrated by TongueTap, we put forth tongue 
gestures as a method for discreet, hands-free control of head-worn 
devices without requiring any additional hardware. 
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